OS Review

Deadlocks
Deadlock problem
System model
Handling deadlocks
deadlock prevention
deadlock avoidance
deadlock detection
Deadlock recovery
*EIRTEF
NHRE
XHEEZx
X R GHIEI
Storage & 1/0
Storage
/O

Deadlocks

Deadlock problem

e Deadlock: a set of blocked processes each holding a resource and waiting to acquire a resource held by
another process in the set
e Examples:
© a system has 2 disk drives, P1 and P2 each hold one disk drive and each needs another one

o semaphores A and B, initialized to 1

种太阳
Highlight

P1 P2
wait (A); wait(B)

wait (B); wait(A)

System model

- Resources: R1, Re, .. ., Rm
- each represents a different resource type
- e.g., CPU cycles, memory space, |/O devices
- each resource type Ri has Wi instances.
- Each process utilizes a resource in the following pattern
+ request
- use

- release

Four Conditions of Deadlock

- Mutual exclusion: only one process at a time can use a resource

- Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes

- No preemption: a resource can be released only voluntarily by the process holding
it, after it has completed its task

+ Circular wait: there exists a set of waiting processes (Po, P4, ..., Pn}
- Po is waiting for a resource that is held by P+
- P1 is waiting for a resource that is held by Pz ...
« Pn-1 is waiting for a resource that is held by Pn
- Pn is waiting for a resource that is held by Po

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Mutual exclusion (BEf) : —XRREEFE—TEHEEERA—HERE (BSER1)
Hold and wait (%1F) : FEZED /\&I‘,}?E’JJ&&IET‘iFf FIRBNEMHEZSFENEM SR,
No preemption (FEIEH) @ HAAREBHNFBEARAERKZT, REEECENR

Resource-Allocation Graph

- Two types of nodes:
= {P1, P2, ..., Pn}, the set of all the processes in the system
= {R1, Rz, ..., Rm}, the set of all resource types in the system
- Two types of edges:
« request edge: directed edge Pi = R

- assignment edge: directed edge R; = Pi

Resource-Allocation Graph

- Process .

- Resource Type with 4 instances .
- Pirequests instance of Rj .—-

- Piis holding an instance of R ..,_.

种太阳
Highlight

种太阳
Highlight

Resource Allocation Graph

- One instance of R

- Two instances of R2 . .
- One instance of R3 ";
- Three instance of R4 A @ @

- P1 holds one instance of R2 and is

waiting for an instance of R1 \

L L]

- P2 holds one instance of R1, one instance - .
of R2, and is waiting for an instance of R3 2

R

- P3 is holds one instance of R3)

TRABARMTAXA
X
Basic Facts

- If graph contains no cycles = no deadlock
- |f graph contains a cycle
- if only one instance per resource type, = deadlock

- if several instances per resource type = possibility of deadlock

Handling deadlocks

种太阳
Highlight

种太阳
Highlight

How to Handle Deadlocks Q@

« Ensure that the system will never enter a deadlock state
- Prevention
- Avoidance

- Allow the system to enter a deadlock state and then recover - database
- Deadlock detection and recovery:

- lgnore the problem and pretend deadlocks never occur in the system

deadlock prevention

Deadlock Prevention %47

- How to prevent mutual exclusion
+ not required for sharable resources
+ must hold for non-sharable resources
+ How to prevent hold and wait
+ whenever a process requests a resource, it doesn't hold any other resources
« require process to request all its resources before it begins execution
- allow process to request resources only when the process has none
+ release all resources that are held before it can request any additional resource

- low resource utilization; starvation possible

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Deadlock Prevention

- How to handle no preemption
- if a process requests a resource not available
- release all resources currently being held
- preempted resources are added to the list of resources it waits for
+ process will be restarted only when it can get all waiting resources
+ How to handle circular wait
- impose a total ordering of all resource types
- require that each process requests resources in an increasing order

- Many operating systems adopt this strategy for some locks.

deadlock avoidance

avoidance #, E3K how resources are be requestsed

Deadlock Avoidance

- Dead avoidance: require extra information about how resources are
to be requested

- Is this requirement practical?
- Each process declares a max number of resources it may need

+ Deadlock-avoidance algorithm ensure there can never be a circular-
wait condition

+ Resource-allocation state:
- the number of available and allocated resources

- the maximum demands of the processes

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Safe State

- When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state:

- there exists a sequence <P1, Py, ..., Pn> Of all processes in the system safety
- for each Pj, resources that Pi can still request can be satisfied by currently
available resources + resources held by all the Pj, with j < i

available P
- Safe state can guarantee no deadlock hold P Safe

. . . , state
- if Pi's resource needs are not immediately available:
- wait until all P; have finished (j < i)
- when P; (j < i) has finished, Pi can obtain needed resources,

« when Pi terminates, Pi+1 can obtain its needed resources, and so on

. N 25
Basic Facts

If a system is in safe state = no deadlocks
If a system is in unsafe state = possibility of deadlock

Deadlock avoidance = ensure a system never enters an unsafe state

unsafe

deadlock

Example Current Hold X
— available =12 -5-2-2=3

/ - Resources: 12

Maximum Needs Current Needs Available Extra need

Ty 10 5 3 5
v 4 2 2
T, 9 2 7

Safe sequences: T1 TO T2

T1 gets and return (5 in total), TO gets all and returns (10 in total)
and then T2

What if we allocate 1 more for T2?
% instance, BRHANFEHUAS, BEBETDAFTRIER, EES—TH
a . '\t/'x:
Deadlock Avoidance Algorithms

- Single instance of each resource type = use resource-allocation graph

- Multiple instances of a resource type = use the banker’s algorithm

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
找出这样的序列就

能说明 safety

种太阳
Highlight

种太阳
Current Hold 当前持有，所以

available = 12 - 5 - 2- 2 = 3

种太阳
当前 available 的资源加上前面所有 P

hold 的资源足够当前 P 使用，称 Safe

state

种太阳
Highlight

Banker’s Algorithm

- Banker's algorithm is for multiple-instance resource deadlock
avoidance

- each process must a priori claim maximum use of each resource type
- when a process requests a resource it may have to wait

- when a process gets all its resources it must release them in a finite
amount of time

Banker’s Algorithm: Example Y
- System state:
- 5 processes Po through Pa
- 3 resource types: A (10 instances), B (Sinstances), and C (7 instances)
- Snapshot at time To:
allocation max available
ABC ABC ABC
Po 010 753 332
P1 200 322
P2 302 902
Ps 211 222
P4 002 433
Data Structures for the Banker’s Algorithm "
+ N processes, m types of resources
- available: an array of length m, instances of available resource
- available[]] = k: k instances of resource type R; available
+ max: anx m matrix
- max [i,j] = k: process Pi may request at most k instances of resource R;
- allocation: n x m matrix
« allocation(i,j] = k: Pi is currently allocated k instances of R;
+ need: n x m matrix max - allocation

- need]i,j = k: Pi may need k more instances of R; to complete its task
- need [i,j] = max[i,j] - allocation [i,j]

种太阳
Highlight

种太阳
已经分配的

种太阳
现在还需要多少， max - allocation

Banker’s Algorithm: Example

- need = max - allocation
need available
ABC ABC

Po 743 332

Pi 122
P 600
Pz 011
Psa 431

- The system is in a safe state since the sequence < P1, P3, P4, Pz, Po> satisfies
safety criteria

HE—1F5, 2 safe By

deadlock detection

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Deadlock recovery

Deadlock Recovery: Option | '

avoidance
recovery safe

- Terminate deadlocked processes. options:

- abort all deadlocked processes

- abort one process at a time until the deadlock cycle is eliminated

 In which order should we choose to abort? kil FFERISEELHFE;
- priority of the process BIRkiI—1HRE, B EStEing:;
- how long process has computed, and how much longer to completion
+ resources the process has used
- resources process needs to complete
« how many processes will need to be terminated

- is process interactive or batch?

Deadlock Recovery: Option ||

- Resource preemption
- Select a victim o FKillFE, REBRSIEKEE:
« Rollback
. Starvation

How could you ensure that the resources do not preempt from

the same process?)
EX

10

种太阳
avoidance 是在资源即将分配的时候检查，

recovery 是周期性检查系统是否 safe

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Summary

- Deadlock occurs in which condition?

- Four conditions for deadlock

- Deadlock can be modeled via resource-allocation graph

- Deadlock can be prevented by breaking one of the four conditions
Deadlock can be avoided by using the banker's algorithm

- A deadlock detection algorithm

- Deadlock recovery

FEHHIX—E D RO FIEIFE BRI &4, MIREFEHIRIL RIS (prevention. avoidance,
detection, ignore problem) ,—% fact ZIRDEEBERAEEIF, BT AKXER ; safe/unsafe
stage MIZEHRIX R RITRBIERFIMTE S L safe stage

*EARE

Background Y

+ Program must be brought (from disk) into memory and placed within a process for
it to be run

- Main memory and registers are only storage CPU can access directly
+ Memory unit only sees a stream of:
- addresses + read requests, or
« address + data and write requests
+ Register access is done in one CPU clock (or less)
- Main memory can take many cycles, causing a stall

- Cache sits between main memory and CPU registers

RIPAEIRIHEFZEImemory R EATHAY, base+limit EXFE DB

11

Protection

- Need to censure that a process can access only access those
addresses in it address space.

We can provide this protection by using a pa
registers define the logical address space of

1024000

opemhg

880000 ?
process

420940 I base + limit
process

wose | base |
process

256000

0

Logical vs. Physical Address Space

The concept of a logical address space that is bound to a separate physical
address space is central to proper memory management

Logical address - generated by the CPU; also referred to as virtual address
Physical address - address seen by the memory unit

Logical and physical addresses are the same in compile-time and load-time
address-binding schemes; logical (virtual) and physical addresses differ in
execution-time address-binding scheme

Logical address space is the set of all logical addresses generated by a
program

Physical address space is the set of all physical addresses generated by a
program

ZhEHh IR bt AR HRE MMU S8R

12

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Memory-Management Unit (MMU)

- Hardware device that at run time maps virtual to physical address

logical physical

memory

- Many methods possible, covered in the rest of this chapter

NS

Memory-Management Unit

Consider simple scheme. which is a generalization of the base-
register scheme.

The base register now called relocation register

The value in the relocation register is added to every address
generated by a user process at the time it is sent to memory

- The user program deals with logical addresses; it never sees the real
physical addresses

Execution-time binding occurs when reference is made to location
in memory

Logical address bound to physical addresses

种太阳
Highlight

Dynamic Linking

Q'\xigf

- Static linking - system libraries and program code combined by the loader into the binary

program image

- Dynamic linking —linking postponed until execution time

- Small piece of code, stub, used to locate the appropriate memory-resident library routine

- Stub replaces itself with the address of the routine, and executes the routine
+ Dynamic linking is particularly useful for libraries
- System also known as shared libraries
- Consider applicability to patching system libraries
- Versioning may be needed
- What will happen without dynamic linking?

- Help from OS: share libraries between processes

Contiguous Allocation

Main memory must support both OS and user processes

Limited resource, must allocate efficiently
- Contiguous allocation is one early method

Main memory usually into two partitions:

Resident operating system, usually held in low memory with

interrupt vector

User processes then held in high memory

Each process contained in single contiguous section of memory

#Bmain memory4SakEERS, —Eiois0sH, B—Ef0E RS INHTER;

Protection: FEAEEEN], FrLAEI baseROlimitFi- registergial LA TS ;

First-fit: EDRILED (first fit) SRESMERBE—EBREAND:, BERN=ERELEF. B85, #
FZR=EBLEEEENK, Bestfit: BEBHENTRIIR, KREFEIAN—FREANTH
R, AEIREXEEEEPR/INI—R, Worstfit: BEILAL (worst fit) FiESRALEER, B

HIREANTRE, SEFHRERARE NG, BRIRNE (RX) MATRIIE,
BiR: AFEZHERE (ONERER)

high
memory 0OS 0S 0OS OS
process 5 process 5 process 5
process 9 process 9
process 8 |—= — —
low
memory process 2 process 2 process 2 process 2

14

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Contiguous Allocation: protection

Relocation registers used to protect user processes from each other,
and from changing operating-system code and data

Base register contains value of smallest physical address

Limit register contains range of logical addresses — each logical
address must be less than the limit register

MMU maps logical address dynamically

Can then allow actions such as kemel code being transient and
kernel changing size

EES D ECRIZRS T a8 MMU 8 protection

Hardware Support for Relocation and Limit %

Registers £

limit relocation
register |

logical physical

address yes address

CPU < h\:‘ memory
no
trap: addressing error

EEDECHHERE)E: SMERE A & REREE

15

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Fragmentation

- External fragmentation

+ unusable memory between allocated memory blocks

- external fragmentation can be reduced by compaction
- shuffle memory contents to place all free memory in one large block
+ program needs to be relocatable at runtime
Performance overhead, timing to do this operation
- Another solution: paging

- 50-percent rule: N allocated blocks, 0.5N will be lost due to fragmentation. 1/3
is unusable!

INERTE B BRR 5% —— [E4E compaction ({BERLH) , £ #MAERE Paging

Paging

— RIS AT LUNES:, BILAS RS RS EHR SR, MmSEIAES A
hiZS[a],

[Bf&: pagettB—B/MNITRIE(HAN4KB), (AT AERRER INEIER

« REREER: MELSEREFEHAEREHE KA/, EXMRFEHERI=E (FElmkeE
B) S AEREEE (RREREAECSEETANE) .
hik:
o EYERESRETEA/MIblock, FiAframe, BEsizes/ME\(2M\), —#R7E512BZ|16MBZ
i8];
« IBBIEREFBSRREREA/IMIblock, FZapages;
o LZEENpage, MEBEEN MrameSZ N (LA TIREREEN Mrame)

o TEYAK—KTFE (CPURENSEXAANTEEGFRR, FAEBERFEFEEAFS, mCPU
B & INFFSEAFEX T RERNESLE) XLitpagexifirzlframe;

16

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

¥/

Paging

+ Physical address space of a process can be noncontiguous; process is allocated physical memory whenever the
latter is available

- Avoids external fragmentation -> avoid for compacting
+ Avoids problem of varying sized memory chunks
- Basic methods
- Divide physical memory into fixed-sized blocks called frames
- Size is power of 2, between 512 bytas and 16 Mbytes
- Divide logical memory into blocks of same size called pages
- Keep track of all free frames
- To run a program of size N pages, need to find N free frames and load program
- Set up a page table to translate logical to physical addresses
- Backing store likewise split into pages

- Still have Internal fragmentation

BB B —RD T

Paging: Address Translation

- Alogical address is divided into:
- page number (p)
—_—
+ used as an index into a page table
- page table entry contains the corresponding physical frame number
- page offset (d)
- offset within the page/frame
- combined with frame number to get the physical address
m page offset
g p A (d) |
7 bits

m - n bits

e

m bit logical address space, n bit page size

17

种太阳
Highlight

种太阳
Highlight

Paging Hardware

T

p T d
T size

+d(f* size + d)

Hiit ... 1111

physical
memory

f—
i
table

BRIEIT— XM F

Paging Example

o

—

2|3 2
317]
page table 3

logical 4

wn

~J

physical

memory

18

种太阳
把 p 最低位去掉，拿高位直接去索引，f 是页

框号，把 p 用 f 替换掉再加上页内偏移 d

具体讲最后的物理地址是 f 左移了每个页size

对应的位数 + d (即 f * 每个页size + d)

种太阳
Highlight

logical memory

Paging: Internal Fragmentation

- Paging has no external fragmentation, but internal fragmentation
- e.g., page size: 2,048, program size: 72.#6§ (35 pages + 1,086 bytes)
———— I

+ internal fragmentation: 2,048 - 1,086 = 962

—_——

- worst case intemal fragmentation: 1 frame - 1 byte

- average internal fragmentation: 1 /2 frame size

- Small frame sizes more desirable than large frame size?

- memory becomes larger, and page table takes memory

. page sizes actually grow over time
. 4KB = 2MB = 4MB = 1GB = 2GB

19

种太阳
n = 2 表示页的大小是 4

个字节，m = 4 表示整个虚

拟地址的大小是 4 byte

2 的 m - n 次方为 4 表示

 4 个 Page

种太阳
虚拟地址为 2 的地方，页号是 0，页框号为 5，物理地址应该为 5 *

4 + 2 = 22

种太阳
Highlight

种太阳
Highlight

\ r‘!_';' &

Hardware Support: Simplest Case

Page table is in a set of dedicated registers \/
Advantages: very efficient - access to register is fast-
e e
Disadvantages: the table size-is-very-sqall, and the‘context switch

need to save and restore these registers

« BfF2R: page tablefE—FFIE INSFHEE, XEERZIFER, ERNEtablefIsizesdF
BERBEMENT)\ (ZEE0aFER) ML F BN ELEEsavekestore Sz

Hardware Support: Alternative Way

. One big page table-mapstogicaladdress to physicaladdress™\
+ the page tabl e kept in main memory

- page-table base regis /
- does PTBR contain ogical address?

- page-table length register (PTLR) indicates the size of the page table
+ Every __cl__at;_aﬂnslmcﬁen-&eeesa—negyires Ws \/
. one for the page table and one for the data / instruction ~__/
+ CPU can cache the translation to avoid one memory access (TLB) _\w/

age O [
p— 5
saged 1[4]
HE]
mge 2 [
g 5 page fakis

]

T1&RH cache

. WEFPRFRIE: B—1=7728 (page-table base register (PTBR)) 7/
LENAERERELE, RAEERTFHEERIER, XE=EANT]
PAFIE, (ERXFMSEEH TE/ORRNAEFRE;

- B TLBIEATMFEAIcache (FFAEE/ L ERIENEPERIINAJIRET)

20

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

TLB

. TLB (translation look-aside buffer) caches the address translation
- if page number is in the TLB, no need to access the page table
+ if page number is not in the TLB, need to replace one TLB entry
- TLB usually use a fast-lookup hardware cache called associative memory
+ TLB is usually small, 64 to 1024 entries
- Use with page table
. W
- Check whether page number is in TLB
. If -> frame number is available and used
. If not -> TLB miss. access page table and then fetch into TLB
- TLB flush: TLB entries are full
- TLB wire down: TLB entries should not be flushed

- switching process needs to switch page table
le
- Option I: Flush TLB at every context switch, or,

- Option Il: Tag TLB entn’isyih address-space identifier (ASID) that uniquely

identifies a process

- some TLB entries can be shared by pmowd fixed in the TLB

- ©.g., TLB entries for the kernel

deal with TLB miss exception\/

86: TLB miss is’/handled by hardware

TLB: tiZMcache, TLBiF—REhebE/ > —RAFHRIAITHE,

=8 EAT X et p e
o PHETHANOEE, HETLBLSAushiRHUSTLBMRFENEAE, EXHRRIEALE.

o H S ERRRATASIDARRCIZ T E T B NHFEATEAL 8], Tag TLB entries with address-
space identifier (ASID) that uniquely identifies a process.

o BHSIAILAETE, some TLB entries can be shared by processes, and fixed in the TLB,

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Memory Protection

- Accomplished by protection bits with each frame
Each page table entry has a present (aka. valid) bit

- present: the page has a valid physical frame, thus can be
accessed

Each page ta/e enty/contains some protection bits

. kernel/USer, read/write, exeaﬁtion?_idkernel-execution?
‘___'_""—'-—-_.___._p-'" -~ ___.________————

S

- why do we neé_d_ih_er_n_?_

- Any violations of memory protection result in a trap to the
kernel 22

种太阳
页表起到 memory protection 的作用

种太阳
Highlight

种太阳
Highlight

种太阳
就算有了TLB，分页后还

是会变慢

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

libc libc

Page Sharing VA A

+ Paging allows to share memory between processes

- €.g., one copy of code shared by all processes of the same
program

- text editors, compilers, browser..
- shared memory can be used for inter-process communication
 shared libraries

- Reentrant code: non-self-modifying code: never changes between
execution

- Each process can, of course, have its private code and data

Structure of Page Table <

- One-level page table can consume lots of memory for page table

- e.g., 32-bit logical address space and 4K pa e \/

- page table would have 1 million entries (232 / 212

- if each entry is 4 bytes = 4 MB of memory for page table alone
- each process requires its own page table
- page table must be physically contiguous
- To reduce memory consumption of page tables:
'EEEEEE&BE&EMG\V//
- hashed page table
- inverted page table

BHNE=MTIRNES N, Mits, ARHX., ELIEEE Hierarchical
B—1 VA ZBEBERGE—1 VA —> PA VR, B—RANHALER, F_RELER, RREEFE
HITIES B AT N{RSHH R IR it

23

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
比如多个进程共享libc的一段代码，这就需要进行内存的共享，所以libc的代码在物理内存

中仅放一份，然后把各个进程的虚拟地址都指向同一个物理地址，这样就实现了共享

种太阳
Highlight

种太阳
12 位

种太阳
Highlight

种太阳
Highlight

种太阳
不同 VA 指向相同 PA

Hierarchical Page Tables

¥/

- Break up the logical address space into

multiple-level

of page tables

. e.g., two-level page table

- first-level page table contains the frame# for second-level page tables

- “page” the page table

- Why hierarchical page table can save memory for page table?

ERXRDNZR — AT HRPITRASFAFEENAEFZE

Two-Level Page Table

ouler page
table

24

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Line

种太阳
Line

RREEFPRINERXGEERIE

Address-Translation Scheme

——ee

logical address \ Vi

| [elrlo]

<

v \
pi{ \
L\
outer page
table
page of
page table

\/

25

种太阳
Line

种太阳
Highlight

种太阳
Highlight

=

-)
+ 64-bit logical address space reqé’es\@ore levels of paging
- two-level paging is not sufficient for 64-bit logical address space

- if pageysize is 4 KB (2'9), outer pge table has 24 entries, inner page
tables hdve 2'° 4-byte entries

- one solution is to add more levels of page tables

+ e.g., three levels of paging: 1st level page table is 2% bytes in size

- and possibly 4 memory accesses-te-get to one physical memory location
- usually not support full 64-bit virtual address space

- AMD-64 supports 48-bit

- canonical form: 48 through 63 of valid virtual address must be copies of bit
47

64 UMD TINEIFR, — page_table_entry BIA/NE 8 F

64-bit Logical Address Space

wr L

—

outer page inner page offset
P1 P2 d
42 10 12

2nd outer page , outer page _inner page , offset

" P2 P3 d
32 10 10 12
—

Re: METRTEE, RSEHRRFIREN BN, SATLABTTLBRELD, B1RTLBmissT, IBAFTH
~EIEN.

26

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Line

种太阳
Highlight

Hashed Page Tables

In hashed page table, virtual page# is hashed into Ea@e,#_ﬂ

. the page table contains a chain of elements hashing to the same
location

- each element contains: page#, frame#, and a pointer to the next
element

- virtual page numbers are compared in this chain searching for a
match

- if a match is found, the corresponding frame# is returned
- Hashed page table is common in address spaces > 32 bits
- Clustered page tables

—_—

e
- Each entry refers to several pages

Hashed Page Table

i

physical
address

physical
memory

Leprp,], =

|

]

hash table

27

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Inverted Page Table

Inverted page table tracks allocation of physical frame to a process

+ one entry fo_rgaabhysical frame =* fixed amount of memory for page table

— e
- each entry has the process id and the page# (virtual address).

+ Sounds like a brilliant idea?

- to translate a virtual address, it is necessary to search the (whole) page table

E— S

- can use TLB to accelerate access, TLB miss could be very expensive
how to implement shared memory?
- a physical frame can only be mapped into one process!

Because one physical memory page cannot have multiple virtual page entry!

Invérted Page Table

—— -.._\\ e 1 \
logical \ 7 /

address |—‘—r‘—'—l D}Wsical /
1/ address physi 4
cpu\ ~{pd[p [d] | O[d}H—+—

) ory
~l - —___'(_/: '\\q_ \\‘-—).‘,_/_/,_ - - "}
oy
search I
J.r"! R |

/ |pd] p

28

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

— R R IR it Edisk, AeEMNdiskdEZImemory, BFEEmHRNEEIIEL, MENREEE
page tablefBREI X RZK—T, Fillswapria¥EiEiEASEEE.

HASTMEREFRA, FATEswapfJinmitia/, miMobile SystemEHE, i2hswapxitEtg, EAMMTEE
/N, CPURIEMEE/N, MRRE=E 7 ERkiHE,

FA10T AswapTa, mAEswapZ EE, XEREFHZVNT, oL DEHERS, MimBE/DEeE FRVFFE,

H Al FEARE " page#iswap outBldiskdr, HEBRIE tpageiiswap inHsE, HBEHE, VEETHIEA, BEE
page outflloadif>k, BMt{TE T, BT —RNEGENFFAETHAES, AN AIUAREBNF YpagetbE Xloadit
k., FMERSRIRAER F, CPUIEEAEIswap, MERITIESIEEHALIRNERE, XU ERANVENEE
(B , FENRRERSRDTIHENERSE, BEERNFEUREEK,

¥

Swapping

- Swapping extends physical memory with backing disks
- a process can be swapped temporarily out of memory to a backing store
- backing store is usually a (fast) disk
- the process will be brought back into memory for continued execution

- does the process need to be swapped back in to same physical
address?

- Swapping is usually only initiated under memory pressure

- Context switch time can become very high due to swapping
- if the next process to be run is not in memory, need to swap it in
- disk IO has high latency

Context Switch Time including Swapping

If next processes to be put on CPU is not in memory, need to swap out a
process and swap in target process

Context switch time can then be very high

100MB process swapping to hard disk with transfer rate of 5S0MB/sec
Swap out time of 2,000 ms
Plus swap in of same sized process
Total context switch swapping component time of 4000ms (4 seconds)

Can reduce if reduce size of memory swapped — by knowing how much
memory really being used 29

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Swapping

main memory

Swapping with Paging

- Swap pages instead of entire process

Swap B EERFEN AR

30

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

£ RISC-V o]

SV39

- Effective address : 64 bit

. [39:63] == bit 38

- vpn: virtual page number D‘H

30129 21]20 12|11
tm—————— m———————— pm———————— o ——————————— +
| VPN[2] | VPN[1] | VPN[@] | page offset |

———————— e e e e +

163 54|53 28|27 19|18 12]9 8|7]6|5|4|3|2|1|0]
o b — b — b —r— = —+—+
| reserve | PPN[2] | PPN[1] | PPN[@] | RSW |D|A|G|U|X|W|R|V]

- o tom—————— tom——— - +———— ottt m— e e

%'T\“L

Sv39
FH 1 pagelIF/NE\N2{12N)=FT

E-1page table entryf9+/N28F T, HMUEZESIX8 T FT5

RFEIFNE 2R =it hE 9 512 entry,
entry 8 4K,

- Effective address : 64 bit entry

- [39:63] == bit 38

- vpn: virtual page number

30|29 21|20 12|11
F—_—————— +—— +—— +—_— +
VPN[2] | VPN[1] | VPN[@] page offset
+— +— +— +r— +

|63 54|53 28|27 19|18 10|19 8|7|6|5]|4|3|2|1]|0]
e e e B s s D St SR S S R SRS
| reserve | PPN[2] | PPN[1] | PPN[@] | RSW |D|A|G|U|X|W|R]|V]

种太阳
Highlight

种太阳
Line

种太阳
每个 9 位可以索引的是 512 个entry, 每个

 entry 8 字节，总共还是 4K, 保证了一个

页 --- 每一级页表项用一个页记录所有

entry 刚好

种太阳
页框号 44 位 + 12 位偏移 == 56 位物理地址

种太阳
Line

种太阳
Highlight

种太阳
Highlight

First Level Page Table

Page size: 4K, page table entry: 8 bytes -> 512 entry
Oxffff ffcO 1357 Obdf

1100 0000 0001 [38:30]

entry 8 byte

+ b1 0000 0000 x 8 bytes = 0x800 3

+ So the physical address of first level page table is 0x8010 0000 +
0x800 = 0x8010 0800

First Level Page Table 54

- So the physical address of first level page table is 0x80100000 +
0x800 = 0x8010 0800

- Suppose its value is 0x00000000_20040401

种太阳
>> 12

种太阳
每一个 entry 8 byte 所以还要乘

8得到偏移量

种太阳
开始解码

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

First Level Page Table

- Suppose its value is 0x00000000_20040401 riscv page table
entry RWX 0
54|53 28|27 19|18 18]9
| reserve | PPN (2] , PPNI1] - PPN[@] ISW |DA|C
-V:1-R:O.W:0,X:O(FW)(:O?'?) 2
PPN << 12 second
- PPN [563:10] = Ox80101 -page table address

Second Level Page Table

- VPN[1] (bit 29 : bit 21) -> b'0 1001 1010 (0x96)

- The second-page table address is 0x8010 1000 + 0x96x8 =
O0x801014b0

- Suppose its value is 0x00000000_20040801

- Third-level page table address: 200408 >> 2 << 12 = Ox8010
2000

Third Level Page Table

« VPNIO] (bit 20 : bit 12) -> b’1 0111 1001 (0x179)
- The page table entry address is 0x80102000 + 0x179x8 = 0x80102bc8

- Suppose its value is Ox00000000_24dde40f

......

reserve PPNI2] PPNI1]

.........

|
|
. V=1RWX =111

. PPN = 0x24dded >> 2 = 0x93779 [™ >

» ->pa = PPN << 12 + page offset = 0x93779bdf

VA: Oxffff ffcO 1357 9bdf bdf 12

PA: O0x9377 9bdf

种太阳
riscv 特殊设计，在 page table

 entry 中当 RWX 都是 0 的时候

，表示其指向的是下一级的页表

，不是物理页

种太阳
PPN << 12 表示第二级页表的起始地址，得到 second

-page table address

种太阳
Highlight

种太阳
PPN -> 物理页框号

种太阳
得到页内偏移 bdf，最低 12 位

BTE —— EHAFE

Background ¥y ——— demand paging

Code needs to be in memory to execute, but entire
program rarely needed or used at the same time

- error handling code, unusual routines, large data
structures

Consider ability to execute partially-loaded program

- program no longer constrained by limits of physical
memory

« programs could be larger than physical memory

- Virtual memory: separation of logical memeory from physical memory

- only part of the program needs to be in memory for execution
- logical address space can be much larger than physical address space
+ More programs can run concurrently
- less I/0O needed to load or swap processes (part of it)

- allows memory (e.g., shared library) to be shared by several processes:
better IPC performance

« allows for more efficient process forking (copy-on-write)
- Virtual memory can be implemented via:

- demand paging

32

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Demand Paging X

- Demand paging brings a page into memory only when it is accessed
- if page is invalid = abort the operation
- if page is valid but not in memory = bring it to memory via swapping
« no unnecessary I/0O, less memory needed, faster response, more apps
- Lazy swapper. never swaps a page in memory unless it will be needed
- the swapper that deals with pages is also caller a pager

- Pre-Paging: pre-page all or some of pages a process will need, before they
are referenced

- it can reduce the number of page faults during execution
- if pre-paged pages are unused, |/O and memory was wasted
- although it reduces page faults, total I/O# likely is higher

Valid-Invalid Bit %

- Each page table entry has a valid-invalid (present) bit
« V = in memory (memory is resident), | = not-in-memory
- initially, valid-invalid bit is set to i on all entries
- during address translation, if the entry is invalid, it will trigger a page fault

- Example of a page table snapshot:

Frame & wii bit

page table

33

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Page Table (Some Pages Are Not in Memory)

0
1
ol A 2
2 ¢ ol Te 4l A
s Tl . HENE
4 E :s: 6 C || [A] [8]
{ N © B E
6 G sl i 8
77w 7l ol F [F] & [H]
) e table
L 10 (1 1 (]
= e
i3
14
15
physical memory

Page Fault /F/ 7 L »J, \/

- First reference tcrﬁ’ﬁgrrp/r;ent page will trap to kernel: page
fault

invalid reference = an exception to the process

et page thble entry to indicate the page is now in memory

- restart the\instruction that caused the page fault

e

34

种太阳
Highlight

ERIERRHEEHIF Free—Frame List

Free-Frame List

When a page fault occurs, the operating system must bring the desired
page from secondary storage into main memory.

Most operating systems maintain a free-frame list -- a pool of free frames for
satisfying such requests.

head —»] —> B —> [§—> 28 - —» 3

Operating system typically allocate free frames using a technique known as
zero-fill-on-demand -- the content of the frames zeroed-out before being
allocated. .

When a system starts up, all available memory is placed on the free-frame
list.

rap to the operating system

2. Save the user registers and process state
3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of
the page on the disk

5. Issue a read from the disk to a free frame:
5.1 Wait in a queue for this device until the read request is serviced
5.2 Wait for the device seek and/or latency time

5.3 Beqgin the transfer of the page to a free frame

种太阳
Highlight

种太阳
Highlight

6. While waiting, allocate the CPU to some other user

7. Receive an interrupt from the disk I/0O subsystem (/O completed)
8. Save the registers and process state for the other user

9. Determine that the interrupt was from the disk

10. Correct the page table and other tables to show page is now in
memory

11. Wait for the CPU to be allocated to this process again

12. Restore the user registers, process state, and new page table,
and then resume the interrupted instruction

Demand Paging: EAT

- Pagefaultrate:0<p <1
- if p = 0 no page faults
- if p =1, every reference is a fault
- Effective Access Time (EAT):
(1 =p) x memory access + p X (
page fauit overnead +
swap page out + swap page in +

instruction restart overhead)

EfE C-O-W &fm, @7, AtARALM

36

种太阳
Highlight

Copy-on-Write XY

———--"'"'.—F—._-_

- Copy-on-write (COW) allows parent and child processes to initially share the same
pages in memory

[- the page is shared as long as no process modifies it |

- if either process modifies a shared page, only then is the page copied
- COW allows more efficient process creation

- no need to copy the parent memory during fork

«only changed memory will be copied later
. vfork syscall optimizes the case that child calls exec immediately after fork
+ parent is sus;md until child exits or calls exec
- child shares the parent resource, including the heap and the stack
- child cannot return from the function or call exit
+ vfork could be fragile, it is invented when COW has not been implemented

After Process 1 Modifies Page C :

37

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Square

What Happens if There is no Free Frame?

¥/

Used up by process pages
Also in demand from the kernel, /O buffers, etc

How much to allocate to each?

Page replacement - find some page in memory, but not really in

use, page it out

- Algorithm — terminate? swap out? replace the page?

- Performance — want an algorithm which will result in minimum

number of page faults

- Same page may be brought into memory several times

Page Replacement

@
LW

- Memory is an important resource, system may run out of memory
- To prevent out-ef-memory, swap out some pages
- page replacement usually is a part of the page fault handler
+ policies to select victim page require careful design
- need to reduce overhead and avoid thrashing
- use modified (dirty) bit to reduce number of pages to swap out

- only modified pages are written to disk

- select some processes to kill (last resort)

- Page replacement completes separation between logical memory and
physical memory — large virtual memory can be provided on a smaller
physical memory

38

种太阳
Square

Need For Page Replacement

N bit G T
o| A 8| v ~—
=T i
2 c 3| v .
al o 2y 0
logical memary page lable for 0 | kemel
i
2 D '//
3 c ?
. frame valid-invalid 4 F
ki]
0 E v 5 H
1 F 4v e a
2[@ i i B S o D
<] H 5| v physical memory backing slore
|logical mamory page tabla for
for process 2 process 2

Page Fault Handler (with Page Replacement) Y

- To page in a page:
- find the location of the desired page on disk
- find a free frame:
- if there is a free frame, use it

- if there is none, use a page replacement policy to pick a victim
frame, write vittim frame to disk if dirty

- bring the desired page into the free frame; update the page tables
- restart the instruction that caused the trap

- Note now potentially 2 page I/O for one page fault = increase
EAT

Importatnt and reference string, IEEES X, PAKLATE reference string EATTETRTI/REL

39

Page-replacement algorithm should have lowest page-fault rate on
both first access and re-access

FIFO, optimal, LRU, LFU, MFU...
- To evaluate a page replacement algorithm:
run it on a particular string of memory references (reference string)
string is just page numbers, not full addresses
» compute the number of page faults on that string
repeated access to the same page does not cause a page fault

in all our examples, the reference string is
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

First-In-First-Out (FIFO)

- FIFO: replace the first page loaded

+ similar to sliding a window of n in the reference string

« our reference string will cause 15 page faults with 3 frames

- how about reference string of 1,2,3,4,1,2,5,1,2,3,4,5 /w 3 or 4 frames?
+ For FIFO, adding more frames can cause more page faults!

- Belady's Anomaly

reference string
7 01 2 0 3 0 4 2 3 03 21201701

[7] [7] [7] [2] 2| [4 [4] [4] [0 o] o] 7] [7] [7]
| o] [o] o] 3| 3 [2] |2 |2 | |1 11/ |o] |o
00N Helb

page frames

33 e EE

15 page faults

belady REIR —— SRAFTAYIETEREIEMN, ARLEBRT, RM3IARANHEHIEN
(E@ENta, AERBMEEZFEXFNEE)

种太阳
Highlight

种太阳
Highlight

种太阳
Square

FIFO lllustrating Belady’s Anomaly

16
14
12

10 \

"

number of page faults

L]

1 2 3 4 5 6 7
number of frames

123412512345

Belady’s Anomaly

123412512345

L=

9 page faults

[m"m"nl
e =&
(e L= 1=

(o= Jlo |

(el Jlo]
(=l j{«]

I
I
Lell~ jf =]

> =1

10 page faults!

I
ILe ol =]

(el e =]

L& L~ o =ff o]

L JLm Je =] » |
[e]lm ol =]

Lol jfp =]l o]

Lo L™ o =)l o]

[2fleoffro]o]

41

Optimal Algorithm

- Optimal : replace page that will not be used for the longest time
- 9 page fault is optimal for the example on the next slide

+ How do you know which page will not be used for the longest time?
- can't read the future

« used for m'easun‘ng how well your algorithm performs

reference string
701 2 0 3 0 4 2 3 0 3 2 1

page frames

Least Recently Used (LRU)

+ LRU replaces pages that have not been used®or the longest time
- associate time of last use with each page, select pages w/ oldest timestamp
+ generally good algorithm and frequently used
« 12 faults for our example, better than FIFO but worse than OPT
- LRU and OPT do NOT have Belady's Anomaly
+ How to implement LRU?
- counter-based
- stack-based

ruhrononstﬂng
2 0 3 0 4 2 23 0 3 2

DREE B BEEE BB D

page frames

LRU SLMEEREK;

42

LRU Approximation Implementation d

- Counter-based and stack-based LRU have high performance overhead
- Hardware provides areference bit
- LRU approximation with a reference bit

- associate with each page a reference bit, initially set to O

- when page is referenced, set the bit to 1 (done by the hardware)

- replace any page with reference bit = O (if one exists)

+ We do not know the order, however

RER, MEEEREMITT

Enhanced Second-Chance Algorithm L

- Improve algorithm by uging reference bit and modify bit (if available) in concert
- Take ordered pair (reference, modify):
+ (0, 0) neither recently used not modified — best page to replace

(0, 1) not recently used but modified — not quite as good, must write out before
replacement

- (1, 0) recently used but clean - probably will be used again soon

« (1, 1) recently used and modified - probably will be used again soon and need to
write out before replacement

- When page replacement called for, use the clock scheme but use the four classes
replace page in lowest non-empty class

- Might need to search circular queue several times

43

Allocation of Frames

- [Each process needs minimum number of frames -according to instructions semantics

. Example: IBM 370 - 6 pages to handle SS MOVE instruction:
- instruction is 6 bytes, might span 2 pages
« 2 pages to handle from
.+ 2 pages to handle to

+ Maximum of course is total frames in the system

Two major allocation schemes

.- fixed allocation

- priority allocation

+ Many variations
Bizp

Thrashing

- If a process doesn't;have “enough” pages, page-fault rate may be
high

- page fault to get page, replace some existing frame

« but quickly need replaced frame back

- this leads to:

low CPU utilization =
kernel thinks it needs to increase the degree of
multiprogramming to maximize CPU utilization ==
another process added to the system
- Thrashing: a process is busy swapping pages in and out

IR 5

44

种太阳
Square

种太阳
Square

Option |

Limit thrashing effects by using local or priority page
replacement

One process starts thrashing does not affect others ->
it cannot cause other processes thrashing

Option I

Provide a process with as many frames as it needs. How?

E AR . B |

] — —
l .
{1 NN L |
30 I U -
J_! " _I].’ L 1! & o .'f P .!
o — - — ——Jn,—‘f
i o4
| — thr—
§ EE—]
B I Te—— e
[1 . i i
24 . =ty -m-—r-i-—l 1 =
P..... - - l_ S —
" — T 20
= =g a AT r] inn
'l e al ! S
1] HTJ' ?5" 4 W
20 3 i
§ N IF ol g_'
g Wy il i)

B_MEER TIERNRE

45

Working-Set Model ¥

- Working-set window(A): a fixed number of page references
- if A too small =+ will not encompass entire locality
- if A too large = will encompass several localities
- if A = = = will encompass entire program

- Working set of process pi (WSSI): total number of pages referenced
in the most recent A (varies in time)

- Total working sets: D =) WSS,
« approximation of total locality
- if D > m == possibility of thrashing

- to avoid thrashing: if D > m, suspend or swap out some processes

Challenge: Keeping Track of the Working Set A4

- Approximate with interval timer + a reference bit

- Example: A = 10,000

- Timer interrupts after every 5,000 time units

—

Keep in memory 2 bits for each page

- Whenever a timer interrupts copy and sets the values of all reference bits to
0

If one of the bits in memory = 1 = page in working sét

- Why is this not completely accurate? - we can not tell when (in 5000 time
unites) the access occurs Hﬁ“"\—__\\

Improvement = 10 bits and interrupt every 1000 time units

TREMMUEM, FESHBEIEMARNMERAEIINR

46

Page-Fault Frequepcy

- More direct approach than WSS

- Establish “acceptable” page-fault frequency (PFF) rate
- If actual rate too low, process loses frame
- If actual rate too high, process gains frame

- Need to swap out a process if no free fames are available

ramber of frames

R%PIIATFDE

Kernel Memory Allgcation b4

- Kernel memory allocation is treated differently from user
memory, it is often allocated from a free-memory pool

- kernel requests memory for structures of varying sizes
-> minimize waste due to fragmentation

- Some kernel memory needs to be physically
contiguous

. e.g., for device I/O

NMAEDERE

47

Buddy System

» Memory allocated using power-of-2 allocator
- memory is allocated in units of the size of power of 2
- round up a request to the closest allocation unit
- split the unit into two “buddies” until a proper sized chunk is available
+ 8.g., assume only 256KB chunk is available, kernel requests 21KB
. splititinto Aand Arof 128KBeach s
- further split an 128KB chunk into B and Br of 64KB
- again, split a 64KB chunk into Ci and Cr of 32KB each
- give one chunk for the request
+ advantage: it can quickly coalesce unused chunks intg_la_mﬁr_d:un\k
+ disadvantage: internal fragmentation
. 33k request -> 64k segment \

Buddy System Allqcator

physically contiguous pages

E—
e

ERFRG LERREEM D ECER

48

Slab Allocator .4

- Slab allocator is a cache of objects
- a cache in a slab allocator consists of one or more slabs
- a Slab contains one or more pages, divided into equal-sized objects
- kernel uses one cache for each unigue kernel data structure
- when cache created, allocate a slab, divided the slab into free objects
- objects for the data structure is allocated from free objects in the slab

- if a slab is full of used objects, next object comes from an empty/new
slab

- Benefits: no fragmentation and fast memory allocation

- some of the object fields may be reusable; no need to initialize again
Slab BRI

Slab Allocator in Lipux

- For example process descriptor is of type struct task_struct
+ Approx 1.7KB of memory
+ New task -> allocate new struct from cache
- Will use existing free struct task_struct
+ A Slab can be in three possible states
+ Full - all used
- Empty - all free
- Partial - mix of free and used
+ Upon request, slab allocator
+ Uses free struct in partial slab
- I none, takes one from empty slab

- If no empty slab, create new empty

RaAE—EHE

49

Page Size

- Sometimes OS designers have a choice
- Especially if running on custom-built CPU
+ Page size selection must take into consideration:
- Fragmentation -> small page size
- Page table size -> large page size
+ Resolution -> small page size
- /O overhead -> large page size
+ Number of page faults -> large page size
. Locality -> small page size
- TLB size and effectiveness -> large page size
- Always power of 2, usually in the range 212 (4,096 bytes) to 222 (4,194,304 bytes)

+ On average, growing over time

TLB Reach

TLB reach: the amount of memory accessible from the TLB
- TLB reach = (TLB size) X (page size)

Ideally, the working set of each process is stored in the TLB

- otherwise there is a high degree of page faults
- Increase the page size to reduce TLB pressure

- it may increase fragmentation as not all applications require
large page sizes

- multiple page sizes allow applications that require larger
page sizes to use them without an increase in fragmentation

I2fZ demand paging BOETE, LIBRFZ, |vbyte, ibyte BT AR
BATHETIEIREL, page size BATFEIFHF

50

种太阳
Square

*XFRG

BEERZENTERS

X{HHF

File Operations N [% N 7%)1
\—=

- OS provides file operations to

+ Create:
- space in the file system should be found
« an entry must be allocated in the directory

- open: most operations need to file to be opened first
: retMr operations

- read/write: need to maintain a pointer
N e

51

Open Files @\D / %) / [o

k — e

N

MWto search the directory to find the
named file

J|

To avoid the searching, OS maintains a table - open-file
contains information about all open files

- Then following operation is specifigd-vie
searching is required

PKRNAB B4, REASNIZETWTER

52

File Structure @

- A file can have different structures, determined by OS or program

- no structure: a stream of bytes or words
linux files

- simple record structure

+ lines of records, fixed length or variable length

e.g., database

- complex structures
e.g., word document, relocatable program file

. simple and complex structure can be encoded in the first method

- Usually user programs are responsible for identifying file structure

Access Methods win

+ Sequential access
- a group of elements is access in a predetermined order
- for some media types, the only access mode (e.g., tape)

+ Direct access

+ access an element at an arbitrary position in a sequence in (roughly) equal time,
independent of sequence size

- it is possible to emulate random access in a tape, but access time varies

. sometime called random access

Sequential access «

1 2 3 4 5 & T B
Random access

1 3 7 2 8 & 4 5

53

EEEEF NSNS, BEHEREEEXHRE, MR— X R, FEEMER data block
inode (RA %384 inode @ EHIREAS 2MIFR)
BREEEE data block #B4E5k

Acyclic-Graph Directories

Share files

Hardlink

Reference count

Softlink LJ

e

) A
OV

XA

EEXHRALINEREE

54

种太阳
Highlight

File-System Structure m

- File is a logical storage unit for a collection of related information
- There are many file systems; OS may support several simultaneously
« Linux has Ext2/3/4, Reiser FS/4, Btrfs...
« Windows has FAT, FAT32, NTFS...
- new ones still arriving — ZFS, GoogleFS, Oracle ASM, FUSE
- File system resides on secondary storage (disks)
- disk driver provides interfaces to read/write disk blocks

- fs provides user/program interface to storage, mapping logical to
physical

- file control block — storage structure consisting of information about a file

- File system is usually implemented and organized into layers

File-System Implementation @

- partition == volume == file system storage space
+ File-system needs to maintain on-disk and igwlms
. on-disk for data storage, in-m_?otﬁi?r?‘!or data access
- On-disk structure has several control blocks
- boot control block contains info to boot OS from that volume - per volume
+ only needed if volume contains OS image, usually first block of volume
+ volume control block (e.g., superblock) contains volume details - per volume

- total # of blocks, # of free blocks, block size, free block pointers, free FCB count, free FCB
pointers

- directory structure organizes the directories and files - per file system
+ Alist of (file names and associated inode numbers)

- per-file file control block contains many details about the file - per file
- permissions, size, dates, data blocks or pointer to data blocks

55

种太阳
Highlight

种太阳
Highlight

In-Memory File System Structures

- In-memory structures reflects and extends on-disk structures

ount table storing file system mounts, mount points, file system
types

- In-memory directory-structure cache: holds the directory
information about recently accessed directories

- system-wide open-file table contains a copy of the FCB of
each file and other info

- per-process open-file table contains pointers to appropriate
entries in system-wide open-file table as well as other info

- 1/0 Memory Buffers: hold file-system blocks while they are being
read fr written to disk

Operatio@O %/ J@ —/L’)@

Sysg‘e-m-w‘née Open-File Table to see ff file is currently in

if it is, create a Pe[:_Fi'Eocess Opgﬂ-_lﬂe_table entry pointing to the
existing System-Wide Opeén-File Table

if it is not, search the directory for the file name; once found, place

the FCB in the System-Wide Open-File Table

make an entry, i.e., Unix file descriptor, Windows file handle in the
Per-Process-Open-File Table,
System-Wide Open-File Table and other fields which include a
pointer to the current location in the filg and the access mode in

which the file is open %/ D

Operations - open()

- increment the open count in the System-Wide Open-Fi

« returns a pointer to the appropriate entry in the Per-Process Open-

File Table
all subsequent operations are performed yith this pointer

process closes file -> Per-Process Open-File Table entry is removed;
open count decremented

all processes close file -> copy in-memory directory information to
disk and System-Wide Open-File Table is removed from memory

-

) P/_\ /;-::\}
Po Pu-:\es‘u Open-File Table

Ps

offset pointer
status information File Control
Block, ile.,
Unix inode

Py and P,

File Control
Block, i.e.,

Unix erdl
|

Py

File-Control
I ' &l]
Unix inode

57

\
1

{ERXH R TR R

loads, and starts the kernel execu

In-memory mo@anle - external file systems must be mounted on
devices, the mount table records the mount points, types of file
systems mounted, and an access path to the desired file system

Unix — the in-memory mount table contains a pointer to the
superblock of the file system on that device

B THRRRZMT 24

58

. . . 4
Directory Implementation

- Linear list of fil with pointer to t

- simple to program, but time-consuming to search (e.g., linear search)
- could keep files ordered alphabetically via linked list or use B+ tree
- Hash table: linear list with hash d ime

- collisions are*possible: two or more file names hash to the same location

NXHRGRN data X HRGEHE ELFIER

Disk Block Allocation
- Files need to be allocated with di tore data
- different allocation strategies have different CW
I‘_--‘_‘——__
- Many allocation strategies:

+ contiguous
+ indexed

59

Contiguous Allocation

+ Contiguous allocation: each file oocupnes set of contiguous blocks
+ best performance in most cases
- simple to implement: only starting location and length are required
» Contiguous allocation is not flexible
. how to increase/decrease file size? \/
+ need to know file size at the file creation
. external fragmontatlon \a/
- how to ccmpact files offline &F online to reduce axI‘emalfyn/ U

- need for compaction off-line (downtime) or on-line
- appropriate for sequential disks like tape

- Some file systems use extent-based conﬁguous all
- extent is a set of contiguous blocks

- afile consists of extents, extents are not necessarily adjacent to each other

inked Allocation

+ Linked allocation: each file is a linked list of disk blocks

- each block contains pointer to next block, ﬁw
- blocks may be scattered anywhere on the disk (no external fragmentation,

no compaction) \/

- Disadvantages

+ locating g file-bfock can take many 1/Os and disk seeks

- Pointer size: 4 of 512 bytes are used for pointer - 0.78% ceis
wasted — —o _— e

- Reliability: what about the pointer has corrupted!
- Improvements: cluster the blocks - like 4 blocks
- however, has internal fragmentation

60

Linked Allocation

file start end
jee 9 25

N

20[J21 [J23[]

24[J2s ez

28[J29[130 J31[]
________,/

Ihdexed Alloca@)

- Indexed allocation: each file has its own index blocks of pointers to its data
blocks

+ index table provides random access to file data blocks

+ no external fragmen . ead of index blocks
- allows holes in the file

+ Index block needs space - waste for small files
—_— .

61

: \¥)
Indexed Allocation i

- Need a method ‘g(allocate index blgcks) cannot too big
or too small \ T

- linked index blocks: link index b to support huge
file

- multiple-level index blocks (e.g., 2-level)

Indexed Allocation /

- combined scheme

First 15 pointer

- Direct block:
first ointers

- Indirect block:
next 3 pointers

£ index Allocation B91ER T8 H X4 RS EmASTIFHISAERI AR/

62

An Example 2

Suppose we have a serial of blocks

Block size: 4k
e

64 blocks

————

HEEEEER
31

o—
5

HNEEEEENIEEEEEEEN I EEEEEEEE
0 7 8 15 16 23

[LI 111]
63

HIEENEEEENIEEEEEN
39 40 47 48

LI 1T [1]
32

&
&

BT FEZSXFENXGRFAREM/IEFRAFTESER (XTHELMEMRE) , REFHOXHE

#HE=ZD (inode XFZHTD)

Superblock
Superblock
Contains information about this file system: how many

inodes/Jdata blocks, where the inode table begins, where the data

Maw
- —

B

,Inodes | Data Region :
DIDD[DIDDDID] [DDIDDIDIDIDID] [DDIDDD[DID[D
8 15 16 23 24 31

Data Region

| DIDIDIDIDIDIDID] DIDIDIDIDID[DID I_']I_']I!]l!JI_']IEJI_']L']
32 39 40 47 48 55 56 63

D: Data block

linode bitmap
d: data region bitmap
S: superblock

FUCERE, EBRNIHRI X LSRR T 28R

63

Read /foo/bar

\/\:‘}—

-o/@

\

/

data inode || root foo bar

bitmap bitmap

root foo bar bar bar
node inode | data data data[0] data[1] data[2]

f open(bar)

—=

b

o

d o
0 s (—:m S
l_‘\\
read() read
ite
Tead /
read() - \/ read
WTl

What about the system-wide/per-process open file table?

64

Write to Diilg@bg

Ny

data inode | root foo [bar || root foo bar bar bar
bitmap bitmap linode inode L; data data data[0] data[l] data[2]

N

O

read
write() write
write
write
read
read
write() | write
write
write

Storage & I/0O

Storage

Disk Scheduling ¥

——

- Disk scheduling usually tries t{)iminimize time
- rotational latency is difficult for OS to calculate
- There are many disk scheduling algorithms
- FCFS
- SSTF
csom \ D
- C-SCAN
- C-LOOK

- We use a request queue of “98, 183, 37, 122, 14, 124, 65, 67"_([0,
199]), and initial head position 53 as the example
{5 queue B AL TBEIRIEER

EEXMEE
RTRMREZZ A it

66

RAID \

™
@- redundant array of inexpensive disks

1/0

—

multiple disk drives provides reliability via redundancy
_——

Disk striping uses a group of disks as one storage unit

RAID is arranged into six different levels

RAID schemes improve performance and improve the reliability of the storage
system by storing redundant data

Mirroring or shadowing (RAID 1) keeps duplicate of each disk

Striped mirrors (RAID 1+0) or mirrored stripes (RAID 0+1) provides high
performance and high reliability

Block interleaved parity (RAID 4, 5, 6) uses much less redundancy

67

/O Hardware

- Incredible variety of I/O devices
- storage, communication, human-interface
- Common concepts: signals from |/O devices interface with computer
- bus: an interconnection between components (including CPU)
. port: connection point for device
- controller: component that control the device
- can be integrated to device or separate circuit board

- usually contains processor, microcode, private memory, bus
controller, etc

- 1/O access can use polling or interrupt
—_ o

MRS IR A2 —ELL polling &F, +4BRMELE polling 4F, R4

I/O Hardware @

Devices are assigned addresses for registers or on-
device memory

/
. direct I/0 instructions t/

- to access (mostly) registers

-« memory-mapped I/0
A peoryppadl

 data and command registers mapped to processor
address space

to access (large) on-device memory (graphics)

68

种太阳
Highlight

A
Direct Memory Access)

=

- DMA transfer data directly between I/O device and memory
+ OS only need to issue commands, data transfers bypass the CPU

- no programmed |/O (one byte at a time), data transferred in large
blocks

« it requires DMA controller in the device or system
- OGS issues commands to the DMA controller

« a command includes: operation, memory address for data, count of
bytes...

- usually it is the pointer of the command written into the command
register

- when done, device interrupts CPU to signal completion

Characteristics of /0 Devic%

Broadly, I/O devices can be grouped by the OS into
- block 1/0: read, write, seek
- character 1/0 (Stream)

memory-mapped file-aceess-

network sockets
_-__'_______\—

- Direct manipulation of I/O device: usually an escape /
back door

- Linux’s ioctl call to send commands to a device driver

69

种太阳
Highlight

种太阳
Highlight

Synchronous/Asynchronous 7o)

’ \Cad |

b"‘-‘_'_'_'———--—._

+ Synchro i i king I/0O

- blocking I/0: process suspended until VO completed

- easy to use and understand, bu efficient

- insufficient for some needs

- non-blocking I/0: I/O calls return as __,much—dah—amm

« process does not block, returns whatever existing data (read or write)

- use select to find if data is ready, then use read or write to transfer data
(bloCkimg-gurng-thisprocess)

(Asynchronous\/O: process runs while I/O executes,
- 1/0 subsystem signals process when /O pleted via signal or callback - data

CEZs

is already in the buffer, no need read() to get the data

- difficult to use but very efficient

RHABREAST TN, TP EHREERAMTTH T

70

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

/O Protection \/

- OS need to protect I/0O devices

- e.g., keystrokes can be stolen by a keylogger if keyboard
is not protected

- always assume user may attempt to obtain illegal I/O
access

- To protect I/O devices:
- define all I/O instructions to be privilege
- /O must be performed via system call

- memory-mapped I/O and I/O ports must be protgcted too
S

In@nce

/
Reduce number of context switches A
Reduce data copying \/ O
Reduce interrupts by using large trapsfers, smart w polling
Use DMA \/
Use smarter hardware devices \/

Balance CPU, memory, bus, and I/O performance for highest
throughput

Move user-mode processes / daemons to kermnel threads

71

Interrupts @

- Interrupt is also used for exceptions
.- protection error for access violation
- page fault for memory access error
- software interrupt for system calls
- Multi-CPU systems can process interrupts concurrently

- sometimes a CPU may be dedicated to handle
interrupts

- interrupts can also have CPU affinity
e

I/O BEEIRHFMT. polling. DMA, —LE451% EFSFS . [HEIEHE

72

种太阳
Highlight

种太阳
Highlight

