RRLGFIER

Week 2 - Lec01

MEEEMN DT

Great Architecture Ideas

Chapter 2

Instruction-Level Parallelism (ILP) | 8<% H1T

Week 2- Lec02
Week3_Lec01

Scoreboard

Tomasulo's Approach
Week_3 Lec_02

ROB
Week4_LecO1
Week4 - Cache

Cache Locality

Cache Miss
Week5b

CPU JRMAEE D7

Week 2 - LecO1

1. RIERFND K

SM

Classed By Flynn [
[ans]
s)
L o]
& , IS : Instruction stream
(a) SISD i 8L DS : Data stream
N CS : Control stream
; CU : Control unit
= PU : Process unit
MM&SM : Memory
[
]...I

(e) MISD i+ SHL (d) MIMD iR HL

2. Measuring Execution Time

* Elapsed time
* Total response time, including all aspects
* Processing, 1/0, OS overhead, idle time
* Determines system performance

* CPU time
* Time spent processing a given job
* Discounts I/O time, other jobs’ shares
* Comprises user CPU time and system CPU time
* User CPU time : CPU time spent in the program itself
* System CPU time: CPU time spent in the OS, performing tasks on behalf of the program.
» Different programs are affected differently by CPU and system performance

Measuring Data Size

* bit - Binary digit
* nibble - four bits
* byte - eight bits

* word - four bytes (32 bits) on many embedded /mobile processors and eight bytes (64 bits)
on many desktops and servers.

* kibibyte (KiB) [kilobyte (KB)] - 21° (1,024) bytes

* mebibyte (MiB) [megabyte (MB)] - 22° (1,048,576) bytes

» gibibyte (GiB) [gigabyte (GB)] - 23° (1,073,741,824) bytes

* tebibyte (TiB) [terabyte (TB)] - 2*° (1,099,511,627,776) bytes
3. * pebibyte (PiB) [petabyte (PB)] - 2°7 (1,125,899,906,842,624) bytes
4. CPU performance

In order to determine the effect of a design change on the performance experienced
by the user, we can use the following relation:

CPU Execution Time = CPU Clock Cycles xClock Period

Alternatively,

CPU Clock Cycles
Clock Rate

CPU Execution Time =

Clearly, we can reduce the execution time of a program by either reducing the
number of clock cycles required or the length of each clock cycle.

IEREE XD

§ 1.4 Quantitative approaches

CPIl in More Detail

* If different instruction classes take different numbers of cycles

* Weighted average CPI

Chapter 1 —Fundamentals of computer design — 57

§ 1.4 Quantitative approaches

Performance Summary

* Performance depends on
* Algorithm: affects IC, possibly CPI
* Programming language: affects IC, CPI
* Compiler: affects IC, CPI
* Instruction set architecture: affects IC, CPI, T,

Chapter 1 —Fundamentals of computer design — 59

Conclusion: Make the common case fast!

Amdahl FR7Z7E 2 D Sp, BER + BIK

Fraction 1519 2LEH Fenhanced TRMCUHAIELH]

B+

Great Architecture Ideas

Chapter 2

Instruction-Level Parallelism (ILP) | {§$ 1T

Week 2- Lec02

e Branch History Table (BHT)
o 1-Bit Predictor
o 2-Bit Predictor

e Branch-Target Buffers (BTB)

Week3_Lec01

Dynamic Scheduling

A major limitation of simple pipelining techniques is that:
* they use in-order instruction issue and execution
* For example, consider this code:

FDIV.D F4, FO, F2
FSUB.D F10, F4, F6
FADD.D F12, F6, F14

The FADD.D instruction cannot execute because the dependence of FSUB.D on

FDIV.D causes the pipeline to stall; yet, FADD.D is not data dependent on
anything in the pipeline.

Instructions are issued in program order, and if an instruction is stalled in the
pipeline no later instructions can proceed.

Dynamic Scheduling o .
e -
Idea: Dynamic Scheduling -W—I |
Method: out-of-order execution ——
| Imeger unit

Control I Conlrolf

status slahues

Dynamic Scheduling with a Scoreboard

12

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

¢ Functional unit status
state of the functional unit

Busy: indicates whether the unit is busy or not

Op: operation to perform in the unit

F;: destination register

F,, Fx: source registers

Q. Qx: functional units producing F;, F

R;, Ry: flags indicating when F;, Fy are ready and not yet
read. Set to NO after operands are read.

Time Name |Busy Op F F F Q Q« R R
Integer| Yes Load F2 F3 No
Multl | Yes Mult FO F2 F4 Integer No Yes
Mult2 | No
Add | Yes Sub F8 F6 F2 Integer Yes No
Divide | Yes Div F10 FO F6 Mult1 No Yes

* Register result status:
indicates which functional unit (FU) will write each register

FO F2 F4 F6 F8 F10 F12 ... F30
Cycle0 FU Mult1

e MEERTRT ERBZEFHNEZSFHEEHMER, XEMBICOMICTIER. Lo EEEE
THEEENMGRY, EICOMEPE— TR EE—AER, EREREMBHEREERIL. SHHHIITAE
QRE, BHNEFTENRSFR. SMHNENBENTFSR. REFHEESEEY (R, Rk XFR)
MIRFRFFERDES R EMERLIE (Qj. Qk Rx, PPT AR, R Multl X
—1T Qj & Integer, EXMRTFERTT 18 F2 REFHRNMEBHBIAEHEL)

o FEFHERNT BEEEELERNTE - FFH, ERAMGEESSALIE. fILEH F4 X3
Rz Mult1, XFIRIASRESRTINITESERIEESA F4.

13

种太阳
Highlight

Dynamic Scheduling

* A Simple Implementation of RISC-V

Check structural hazards

Check data hazards

* When an instruction could execute without hazards, it was issued
from ID knowing that all data hazards had been resolved.

% ID #fp
1. IS —> Check structural hazards

2. RO —> Check data hazards

Dynamic Scheduling

* To allow out-of-order execution, we essentially split the ID pipe
stage of our simple five-stage pipeline into two stages :

* Issue(lS): Decode instructions, check for structural hazards. (in-order issue)

* Read Operands(RO): Wait until no data hazards, then read operands. (out
of order execution)

Check structural hazards Check data hazards

14

§2.1 Dynamic Scheduling

Dynamic Scheduling

* Qut-of-order execution introduces the possibility of WAR and WAW
hazards, which do not exist in the five-stage integer pipeline and its
logical extension to an in-order floating-point pipeline.

* Consider the following RISC-V floating-point code sequence:
" FDIV.D F10, FO, F2
FSUB.D F10,F4,F6
FADD.D F6,F8, F14

WAR

* Scoreboard algorithm is an approach to schedule the instructions.

* Robert Tomasulo introduces register renaming in hardware to minimize
WAW and WAR hazards, named Tomasulo’s Approach.

e Scoreboard algorithm

e Robert Tomasulo (Etscoreboard® Bnfft)

Scoreboard

Dynamic Scheduling: Scoreboard algorithm

Ergean.

| o] H R " =

e daris s of 0 pvaneiroe st Joaee boas’

种太阳
Highlight

§2.1 Dynamic Scheduling

Dynamic Scheduling: Scoreboard algorithm
* Show what the information tables look like for the following code
sequence when only the first load has completed and written its

result:
FLD F6,34 (R2)
FLD F2,45 (R3)
FMUL.D FO, F2, F4
FSUB.D F8, F2, F6
FDIV.D F10, FO, F6
FADD.D F6, F8, F2
HEOWEK:

§2.1 Dynamic Scheduling

Dynamic Scheduling: Scoreboard algorithm

IS RO EX wB
FLD F6, 34(R2) v v v
FLD F2, 45(R3) v v

FMUL.D FO, F2,F4
FSUB.D F8, F6, F2
FDIV.D F10, FO, F6
FADD.D F6, F8, F2

€ € < <€ <

THRESBHAFER:

Function Component Status

Rj,Rk: “yes” ——operand is ready but not read;
“no” & “Qj =null” ——operand is read ;
“no” & “Qj != null” ——operand is not ready.

TSR

Register Status

Instruction Status

Show what the status tables look like when the FMUL.D is ready to write its result. "!

PR |

(MUL3EZL #RsubiE SR8 1<)

17

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Function Component Status

Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer no
Multl yes MUL FO F2 F4 no no
Mult2 no
Add yes ADD F8 F6 F2 no no
Divide vyes DIV F10 FO F6 Multl no yes

FO F2 F4 F6 F8 F10 - F30
Qi Multl Add Divide

Show what the status tables look like when the FMUL.D is ready to write its result.

Tomasulo's Approach
.

Dynamic Scheduling: The Idea

* Consider the following RISC-V floating-point code sequence:

FDIV.D FO,F2,F4

Anti-dependence { FADD.D F6, FO, F8

WAR hazards FSD F6, O(R1) Output-dependence
(F8) WAR hazards

FSUB.D F8, F10, F14 (F6)

FMUL.D F6, F10, F8

18

Tomasulo’s Approach

* These name dependences can all be eliminated by register
renaming.
* Assume the existence of two temporary registers, S and T.
* The sequence can be rewritten without any dependences as :

FDIV.D FO, F2, F4
FADD.D S, FO, F8
FSD S, 0(R1)
FSUB.D T, F10, F14
FMUL.D F6, F10, T

} F6 changeas S

} F8 changeasT

§2.1 Dynamic Scheduling

Tomasulo’s Approach

From instruction unit

Instruction L "'@"'“’1

queue

operations
FP operations Dpscand e
rAan Ses
Sor bt
1 Load buffers

6
5 Operation bus
4
g 3 " dﬂtlon

2
1

Data Address
T
Common data bus (CDB)

The basic structure of a floating-point unit using Tomasulo’s algorithm

o RBHRAEMNE, ELMAIUEN
o IESHbuffer@iZINER, 1EiERSRIRIEEStreadyELHIT

19

§2.1 Dynamic Scheduling s

Tomasulo’s Approach: Main Idea

* |t tracks when operands for instructions are available to minimize
RAW hazards;

* It introduces register renaming in hardware to minimize WAW and
WAR hazards.

(WAWFIWARER a] A8 E a2 J L ERR)
(Tomasulo AU R=)

:
Tomasulo’s Approach

* Let’s look at the three steps an instruction goes through :
* Issue . Get the next instruction from the head of the instruction queue (FIFO)

* If there is a matching reservation station that is empty, issue the instruction to
the station with the operand values, if they are currently in the registers.

* If there is not an empty reservation station, then there is a structural hazard
and the instruction stalls until a station or buffer is freed.

* If the operands are not in the registers, keep track of the functional units that
will produce the operands.

* This step renames registers, eliminating WAR and WAW hazards not
in the registers.

s MERBMESHMNE (BUEM—H—FEIHEN)

20

种太阳
Highlight

§2.1 Dynamic Scheduling

Tomasulo’s Approach

Execute

* When all the operands are available, the operation can be executed at
the corresponding functional unit.

* Load and store require a two-step execution process
* It computes the effective address when the base register is available.
* The effective address is then placed in the load or store buffer.

§2.1 Dynamic Scheduling

Tomasulo’s Approach

Write results

* When the result is available, write it on the CDB and from there into
the registers and into any reservation stations (including store buffers).

* Stores are buffered in the store buffer until both the value to be

stored and the store address are available, then the result is written
as soon as the memory unit is free.

Example

21

种太阳
Highlight

§2.1 Dynamic Scheduling

Tomasulo’s Approach

From instruction unit .
l FF registers

ettt l Register status Qi
oeve —————— Fé[e

ADDF2, F0, Fh F4 b

MULFO, F2, F4 F1 a

Fi

FP operations

Operand buses

Operation bus

ADD3

ADD2 MULT2
ADD1 MULT1
1‘ Reservation

stations

g
=

Commaon data bus (CDB)

§2.1 Dynamic Scheduling

Tomasulo’s Approach

There are three tables for Tomasulo’s Approach.

* Instruction status table: This table is included only to help you
understand the algorithm; it is not actually a part of the hardware.

* Reservation stations table: The reservation station keeps the state
of each operation that has issued.

* Register status table (Field Qi): The number of the reservation
station that contains the operation whose result should be stored
into this register.

§2.1 Dynamic Scheduling

Tomasulo’s Approach

Each reservation station has seven fields:
Op: The operation to perform on source operands.

Qj, Qk: The reservation stations that will produce the corresponding
source operand.

Vj, Vk: The value of the source operands.

Busy: Indicates that this reservation station and its accompanying
functional unit are occupied.

A: Used to hold information for the memory address calculation for
a load or store.

Example

§2.1 Dynamic Scheduling

Dynamic Scheduling: Tomasulo’s algorithm

Issue Execute Write Result
FLD F6, 34(R2) v v v
FLD F2, 45(R3) v
FMUL.D FO, F2,F4
FSUB.D F8, F6, F2
FDIV.D F10, FO, F6
FADD.D F#6, F8, F2

[S

< < <2 < =

23

§2.1 Dynamic Scheduling

Function Component Status
Busy Op Vi Vi Qj Qk A

Loadl No
Load2 Yes Load 45+Regs[R3]
Add1 Yes suB Mem[34+Regs[R2]] Load2
Add2 Yes ADD Add1l Load2
Add3 No
Muitl Yes MUL Reg[F4] Load2
Mult2 Yes DIV Mem[34+Regs[R2]] Multl
T hegsersts |
FO F2 F4 F& F8 F10 = F30
Qi Multl Load2 Add2 Addl Mult2

§2.1 Dynamic Scheduling

Dynamic Scheduling: Tomasulo’s algorithm

I —— e —

Issue Execute Write Result
FLD F6, 34(R2) v v v
FLD F2, 45(R3) v v v
FMUL.D FO,F2,F4 v v
FSUB.D F8, F6, F2 v v v
FDIV.D F10, FO, F6 v
FADD.D Feé, F8, F2 v v v

Show what the status tables look like when the FMUL.D is ready to write its result.

24

种太阳
Highlight

§2.1 Dynamic Scheduling

Summary

1. Tomasula’s Algorithm main contributions

Dynamic scheduling

Register renaming---eliminatining WAW and WAR hazards
Load/store disambiguation

Better than Scoreboard Algorithm

Tom —> issue, Execute, Write Result

§2.1 Dynamic Scheduling

Summary

1. Tomasula’s Algorithm main contributions

Dynamic scheduling

* Register renaming---eliminatining WAW and WAR hazards
Load/store disambiguation

Better than Scoreboard Algorithm

25

种太阳
Highlight

种太阳
Highlight

Summary

2. Tomasulo’s Algorithm major defects
* Structural complexity.
* Its performance is limited by Common Data Bus.

* A load and a store can safely be done out of order, provided they access
different addresses. If a load and a store access the same address, then
either:

* The load is before the store in program order and interchanging them results in a
WAR hazard, or

* The store is before the load in program order and interchanging them results in a
RAW hazard

* Interchanging two stores to the same address results in a WAW hazard

§2.1 Dynamic Scheduling

Summary

3. The limitations on ILP approaches directly led to the movement to
multicore.

Question

Does out-of-order execution mean out-of-order completion?

Week 3 Lec_02

26

§2.2 Hardware-Based Speculation

Hardware-Based Speculation
Cache for uncommitted instruction results:
I B R S e Fhicassioet |
1. When the program execution phase is completed,
replace the value in RS with the number of ROB R:ofrfdeer
: : o FP utier
2. Increase instruction submission stage op 1
3. ROB provides the number of operations in the Queue FP Regs
completion phase and the commit phase
4. Once the operand is submitted, the result is written
to the register | Res Stations | | Res Stations |
5. In this way, when the prediction fails, it is easy to |
restore the inferred execution instruction, or when an
exception occurs, it is easy to restore the state
[B]
ROB
From instruction unit
Instruction ek s
The basic structure of a puens
- . ’ load/store FP registers
FP unit using Tomasulo’s operations -
algorithm and extended Addres wai E— S
to handle speculation. } Lowd buflers
5 Operation bus
4
3
i e
Store 1 1 1
Store data| |2ddress
Address
Memory unit FP multiplicr
Load data Common data bus (CDB)

ROB

种太阳
Square

§2.2 Hardware-Based Speculation

Hardware-Based Speculation

1. Issue—get instruction from FP Op Queue
2. Execution—operate on operands (EX)
3. Write result—finish execution (WB)

4, Commit—update register with reorder result

Hardware-Based Speculation

* Hardware-based speculation combines three key ideas
* dynamic branch prediction to choose which instructions to execute

* speculation to allow the execution of instructions before the control
dependences are resolved (with the ability to undo the effects of an
incorrectly speculated sequence)

* dynamic scheduling to deal with the scheduling of different combinations
of basic blocks

28

§2.2 Hardware-Based Speculation

Hardware-Based Speculation

* WB
* The ROB holds the result of an instruction between the time the operation

associated with the instruction completes and the time the instruction
commits

* The ROB is a source of operands for instructions, just as the reservation
stations provide operands in Tomasulo’s algorithm.

* instruction commit

* The key idea behind implementing speculation is to allow instructions to
execute out of order but to force them to commit in order and to prevent
any irrevocable action (such as updating state or taking an exception) until
an instruction commits.

* The reorder buffer (ROB) provides additional registers in the same way as
the reservation stations in Tomasulo’s algorithm extend the register set.

ROB %7 Commit 323
(ZHEEtHEM ROB Z#UE, L% 2] Commit FEEUIEM N ROB 45 Commit)
(BEREASRERERT, BIBIEA Tomasulo 2—1$#Y)

§2.2 Hardware-Based Speculation

Tomasulo with Reorder Buffer - Summary

st | e oecGomp | ook comme_—
1 3 4 5

FLD F6, 34(R2)

FLD F2, 45(R3) 2 4 5 6
FMUL.D FO, F2, F4 3 6-15 16 17
FSUB.D F8, F6, F2 A 6-7 8 18
FDIV.D F10, FO, F& 5 17-56 57 58
FADD.D Fb, F8, F2 6 9-10 11 59

* In-order Issue/Commit, Out-of-Order Execution/Writeback

29

§2.2 Hardware-Based Speculation

Hardware-Based Speculation

* Instructions are finished in order according to ROB

* |t can be precise exception.

* It is easily extended to integer register and integer function unit.
* But the hardware is too complex.

Week4_LecO1

it1- 302

§2.3 Exploiting ILP Using Multiple Issue and

Static Scheduling

Superscalar & VLIM

Ba==—_—1 |

7To 1 2 3 4 5 6 T

0 1 2 3 4 5 6
Normal Pipeline Superscalar

3 Operations

® 1 2 3 4 5 6 7p0 1 2 3 4 5 6 T
Super pipeline VLIW

30

Week4 - Cache

Memory

* Mechanical memory
» Acoustic wave/torgue wave delay line memory
* Magnetic Drum Memory
* Magnetic core memory

* Electronic memory
* SRAM
« DRAM
* SDRAM
* Flash
* ROM

* PROM
. Storage « EPROM

* Optical memory

* Register

* Cache

* Memory

e Cache: a safe place for hiding or storing things (1976)

Memory /O

CPU Bus Bus
—{ cache | — > Memory . /0

Devices

Register

e The highest or first level of the memory hierarchy encountered once the addr leaves the

processor

e Employ buffering to reuse commonly occuring items

Cache Hit/Miss

Processor
* When the processor can/cannot find Data are transerred
a requested data item in the cache !
HA
[
hit rate miss rate
hit time miss penalty

o FEIF ISR cache £NY hit

Block/Line Run

* A fixed-size collection of data containing the requested word,
retrieved from the main memory and placed into the cache

in a block

requested word

in a block

Cache Locality

* Temporal locality
need the requested word again soon

* Spatial locality
likely need other data in the block soon

32

种太阳
Highlight

Cache Miss

* Time required for cache miss depends on:

Latency: the time to retrieve the first word of the block
Bandwidth: the time to retrieve the rest of this block

Processor-Memory Performance Gap

Memory
Bus

CPU
Cache
Register
Register Cache
reference reference
Size
Speed

Q1l: Block Placement

Direct mapped

(Block address) modulo (Number of blocks in the cache)

j

«—— i bit

Memory

Memaory
reference

Storage

Flash
memary
referenge

/
L .
! !
! Y
2 Y
Il
¢ A
i Fl
¥ ¥ W
! ! !

00001 00101 01001 1101 10001

Marmocry

10101 11001

11101

33

种太阳
Highlight

种太阳
Highlight

Fully-associative

Memory

Processor

D00 =3 O on o 23 b = O

Data is transferred

=DM ORI D

2-way Set-associative

Memory

Cache

D aoae= O

[

=1 00 O o LD B =D

HIBEAEURT cache HZ /DR

8-32 Block Placement

Direct Mapped Fully-associative 2-way Set-associative

block 12 can go only into block 12 can go anywhere block 12 can go anywhere in set 0
Block block 4 (12 mod &) (12 mod 4)
NLIthf 001 2 1 45 & 7 a1 2 3 4546 7 D12 3 45 87

Cache
Set Set Set Set
0 12 3
Block T 1 1 1 11 11 11 2 % 2 ? 2 :o¢opo:o:oil
Numbero 1+ 2 24 5 6 7 8 90 1 2 v 4 5 57 89 0 1 2 3 &5 6 780 01
Memory

N-way Set-associative

» The higher the degree of association, the higher the utilization of cache
space, the lower the probability of block collision and the lower the
failure rate.

Full-associative M 1
Direct mapped 1 M
Set-associative l<n<M 1<G<M

* Most Cache:n <4
* Question: Is the greater the number n, the better?

35

Q2: Block Identification

* Every block has an address tag that stores the main memory
address of the data stored in the block.

» When checking the cache, the processor will compare the
requested memory address to the cache tag -- if the two are equal,
then there is a cache hit and the data is present in the cache

* Often, each cache block also has a valid bit that tells if the
contents of the cache block are valid

The Format of the Physical Address

* The Index field selects
* The set, in case of a set-associative cache
* The block, in case of a direct-mapped cache
* Has as many bits as log2(#sets) for set-associative caches, or log2(#blocks)
for direct-mapped caches
* The Byte Offset field selects I I Byte Offsel
* The byte within the block
* Has as many bits as log2(size of block)

* The Tag is used to find the matching block within a set or in the
cache

* Has as many bits as Address_size — Index_size — Byte Offset_Size

Block Address i i
{ M= t
Tag | Index

Stored incache and used Selects set
incomparison with CPU address

36

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

6362 - 1231211 --+-2 10

Byte
affset

* 64-bit addresses
A direct-mapped cache
Hit Tag +52 1 * The cache size is 2" blocks, so n bits are used
&
Index

for the index
Data
* The block size is
_ v" 2Mwords (242 bytes = 2™*> bits)

'"dg" Vald 129 . v m bits are used for the word within the

) | T 1 block, and two bits are used for the byte

2 ' | part of the address

_ : tag 64-(n+m+2)
1'0'521 | ' cache 2"x(block size+ tag size + Valid size).
1022 =2"%(2™ x32 + (64 - n - m - 2) +1)
e - =2"%(2™x32 + 63 - n - m).

452 32
actual size/complete cache size
(4 KiB cache

Q3: Block Replacement

* In a direct-mapped cache, there is only one block that can be replaced

* In set-associative and fully-associative caches, there are N blocks (where
N is the degree of associativity)

Block
Number

o1 2 31 45 & 7 @1 3 45 k7

Fully- 2-way Sel-
associativ associalive
Cache Cache
Sel Set Set Set
0 1 2 3
ﬁﬁcﬂigr 11 LI | T1 11 11 z r 1 1

22 2 1 ¢z 2 13
1 2 345 6 7 &8 A0 1T !} 345 AT & 4 0 1)} 3 45 & 7TE ¥ o0 A

Memory

EHiZMg EAREEHRN

37

种太阳
Highlight

种太阳
Highlight

Strategy of Block Replacement
* Several different replacement policies can be used

* Random replacement - randomly pick any block
* Easy to implement in hardware, just requires a random number generator
» Spreads allocation uniformly across cache
= May evict a block that is about to be accessed

« Least-Recently Used (LRU) - pick the block in the set which was least recently

accessed
* Assumed more recently accessed blocks more likely to be referenced again
« This requires extra bits in the cache to keep track of accesses.

* First In, First Out(FIFO)-Choose a block from the set which was first came into the
cache
Pre: 10mins —> T2 E or &£ or S

S CPU HEE

Weekb

Strategy of Block Replacement
* Several different replacement policies can be used

* Random replacement - randomly pick any block
= Easy to implement in hardware, just requires a random number generator
» Spreads allocation uniformly across cache
* May evict a block that is about to be accessed

* Least-Recently Used (LRU) - pick the block in the set which was least recently

accessed
* Assumed more recently accessed blocks more likely to be referenced again
* This requires extra bits in the cache to keep track of accesses.

* First In, First Out(FIFO)-Choose a block from the set which was first came into the
cache

38

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

Hit rate is related to cache block size

{RIEA =R cahce TARILTE

种太阳
Highlight

41

§ 3.3 Four Questions for Cache Designers

* |[f the most recently accessed block is A and C is the block that has not
been accessed for the longest time, the three flip-flops’ states must be
respectively: T,;=1, T,=1, and Ty=1.

* If the most recently accessed block is B and C is the block that has not
been accessed for the longest time, the three flip-flops’ states must be
respectively: T,;=0, T,=1, and T,=1.

* Therefore, the block C that has not been accessed for the longest will be
replaced. In that, the Boolean algebra expression must be:

Cizu =Tz Tuce Tsc+ Tize Tac® Tsc = Tuc® Tec

§ 3.3 Four Questions for Cache Designers

A il By,] G, L

: :

[i 1 1 [1

Tin Tic 1

R s R s R s
A
B
=

* Change the state of the flip-flop after each access.
* After accessing block A: Tyg=1, T,=1
* After accessing block B: T,=0, Tp=1
* After accessing block C: T,=0, Tg=0

42

§ 3.3 Four Questions for Cache Designers

Hardware usage analysis (if p is the number
of cache blocks)

* Since each block may be replaced, its signal needs to be generated with
an AND gate, so the number of AND gates will be equal to p.

» Each AND gate receives inputs from its related flip-flops, for example,
A ry AND gates must have inputs from T,, and T, B, must have inputs
from T,; and Ty, and the number of comparison pair flip-flops is the
block number minus 1, so the input number of the AND gateis p - 1.

* If p is the block number, for pairwise combination, the number of
comparison pair flip-flops should be CZ, which is p-(p-1)/2.

Q4: Write Strategy

* When data is written into the cache (on a store), is the data also written to

main memory?

= |f the data is written to memory, the cache is called a write-through cache
* Can always discard cached data - most up-to-date data is in memory
* Cache control bit: only a valid bit
* memory (or other processors) always have latest data

= |f the data is NOT written to memory, the cache is called a write-back cache
* Can't just discard cached data - may have to write it back to memory
* Cache control bits: both valid and dirty bits
* much lower bandwidth, since data often overwritten multiple times

* Write-through adv: Read misses don't result in writes, memory hierarchy is
consistent and it is simple to implement.

* Write back adv: Writes occur at speed of cache and main memory bandwidth
is smaller when multiple writes occur to the same block.

43

种太阳
Highlight

Using a Finite-State Machine to Control a Simple Cache

finite-state machine

A sequential logic function consisting of a set
of inputs and outputs, next-state function that
maps the current state and the inputs to a
new state, and an output function that maps
the current state and possibly the inputs to a
set of asserted outputs.

next-state function

A combinational function that, given the inputs and
the current state, determines the next state of a
finite-state machine.

Combinational
control logic

Outputs <

Inputs

Datapath control outputs

T

Inputs from cache ‘ Sl

register ‘

datapath

F

Next state

45

种太阳
Highlight

Using a Finite-State Machine to Control a Simple Cache

-

/"f. -'."\‘\ ~ H-‘\
/ Cache Hit /
Idle \ / Compare Tag

(Mark Cache Ready [¢ yalid &4 Hit,

| =\ Set Valid, SelTag,
\ Valid CPU request _if Write Set Dirty

/Cache Cache
,/ Miss Miss
S and and
y oy Old Block | Old Block
Ay / is Clean is Dirty

/" Write-Back

Write Old
Block to
Memory

/
!

Allocate Memory Ready |

| Read new block
'-.\ from Mermory

N N\

™, Memory
not | 4 not .f'l
Rcagy/f ‘\\l‘_ﬁr‘-’iﬂ)",/

Memory System Performance

CPU Execution time

* CPU Execution time = (CPU clock cycles + Memory stall cycles)xClock
cycle time

Memory stall cycles = ICX MemAccess refs per instructions X Miss rate X Miss penalty

CPUtime = ICx(CPI y MemAccess |y piosRate x MissPenaky)nydeTime
ecution Inst
CPUtime =JC>{CP1 4 MemMisses xMissPenafty]nycteTime
Execution Inst

e CPI Execution includes ALU and Memory instructions

46

Average Memory Access Time

* Average Memory Access Time

Whole accesses time
All memory accesses in program
Accesses time on hitting+ Accesses time on miss
All memory accesses in program

Average Memory Access Time =

= Hit time + (Miss Rate X Miss Penalty)

- (HitTa'me_,m + MissRate,,, x MissPenalty,) x Inst%
(HitTime,,,, + MissRate,,,, x MissPenalty,,,)x Data%

o Inst

CPUtime = IC x(
Inst

Examplel: Impact on Performance

* Suppose a processor executes at

* Clock Rate = 200 MHz (5 ns per cycle), Ideal (no misses) CPI =1.1

* 50% arith/logic, 30% ld/st, 20% control
* Suppose that 10% of memory operations get 50 cycle miss penalty
* Suppose that 1% of instructions get same miss penalty

* What is the CPUtime and the AMAT ?
sAnswer: CPIl = ideal CPI + average stalls per instruction = 1.1(cycles/ins) +[0.30
(DataMops/ins) x 0.10 (miss/DataMop) x 50 (cycle/miss)] + [1 (InstMop/ins) x 0.01
(miss/InstMop) x 50 (cycle/miss)] = (1.1 + 1.5 +.5) cycle/ins = 3.1

e AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54

Example2: Impact on Performance

Assume : Ideal CPI=1 (no misses)
* |/S’s structure . 50% of instructions are data accesses
* Miss penalty is 25 clock cycles
* Miss rate is 2%
* How faster would the computer be if all instructions were cache hits?
Answer: first compute the performance for always hits:
= (CPU clock cycles+memory stall cycles) X clock cycle
= (IC X CPI+0) X Clock cycle
=|1C X 1.0 Xclock cycle
* Now for the computer with the real cache, first compute memory stall cycles:

CPUEKECU“CII"I time

Memory accesses y)
Y x Missrate x Miss penalty

Memory stall cycles= IC x _
Instruction

=ICx(1+0.5)x0.02x25=ICx0.75
The total performance is thus:

CPU execution time cache =(IC X 1.0+IC X 0.75) X Clock cycle
=1.75 XIC X Clock cycle

The performance ratio is the inverse of the execution times

CPU execution time . 1.75 XIC XClock cycle
CPU execution time 1.0 X IC Xclock cycle
= 1.75

The computer with no cache misses is 1.75 time faster.

48

Example3: Impact on Performance

Assume: CPl=2(perfect cache) clock cycle time=1.0 ns
* MPI{memory reference per instruction)=1.5
» Size of both caches is 64K and size of both block is 64 bytes
* One cache is direct mapped and other is two-way set associative. the former has miss rate of
1.4%, the latter has miss rate 1.0%
* The selection multiplexor forces CPU clock cycle time to be stretched 1.25 times
* Miss penalty is 75ns,and hit time is 1 clock cycle
* What is the impact of two cache organizations on performance of CPU (first, calculate the
average memory access time and then CPU performance)?

Answer :
Average memory access time is
= Average memaory access time=Hit time + Miss rate X miss penalty

Thus, the time for each organization is
* Average memory access timel-way=1.0+(0.014 X 75)=2.05 ns
» Average memory access time2-way=1.0>X1.25 +(0.01 X75)=2.00 ns

Example3: Impact on Performance

The average memory access time is better for the 2-way set-associative cache.

CPU performance is

Mis:
CPUtime = IC x (CPI) IS5ES_ « Miss penafty} x Clockcycle time
execution [nstruction

x Clockcycle time)

= L x[(CPI .
execution

Memory accesses

x Miss penaltyxClockcycle n'rmzﬂ

+| Miss rate x -
Instruction

Substituting 75 ns for (miss penalty X Clock cycle time), the performance of each
cache organization is

CPU time, ., =ICX(2X 1.0 + (1.5 X0.014 X 75))=3.58 XIC
CPU time,.,,,,=ICX (2X 1.0X 1.25 + (1.5 X 0.010 X 75))=3.63 XIC

Relative performance is

CPUtimex wy _ 3.63xInstructioncount _3.63

= = =1.01
CPUtime-w 358 xInstructioncount 3.58

In contrast to the results of average memory access time, the
direct-mapped leads to slightly better average performance. Since
CPU time is our bottom-line evaluation.

How to Improve

Hence, there are more than 20 cache optimizations into these categories:
AMAT = HitTime + MissRate x MissPenalty

1.Reduce the miss penalty
——multilevel caches, critical word first, read miss before write miss, merging write buffers, and victim
caches
2. Reduce the miss rate
——Ilarger block size, large cache size, higher associativity, way prediction and pseudo-associativity,
and compiler optimizations
3. Reduce the time to hit in the cache
——small and simple caches, avoiding address translation, pipelined cache access, and trace caches3.
4. Reduce the miss penalty and miss rate via parallelism
——non-blocking caches, hardware prefetching, and compiler prefetching

Summary

* Memory hierarchy
* From single level to multi level
» Evaluate the performance parameters of the storage system (average price per bit C; hit
rate H; average memory access time T)
* Cache basic knowledge Reduce miss rate
* Mapping rules
* Access method

* Replacement algorithm Reduce miss penalty
* Write strategy
* Cache performance analysis Reduce hit time

* Virtual Memory (the influence of memory organization structure on Cache
failure rate) .

50

种太阳
Highlight

Cache Coherence

Core 1

Core 2

CPU1

CPUZ

Cache

el |

P11

P2

el |

P3|

Cache

Cache

Memory
Cache contents for | Cache contents contents for
CPU A for CPUB location X

CPU A reads X

CPU B reads X

0
1
2
3

CPU A stores 1 into X

Hlolo)|o

Cache Coherence

Coherence

defines what values can be returned by a read.
k

A read by a processor P to a location X that follows a write by P to X, with no writes of X by another

processor occurring between the write and the read by P, always returns the value written by P.

A read by a processor to location X that follows a write by another processor to X returns the written value
if the read and write are sufficiently separated in time and no other writes to X occur between the two

accesses.

Writes to the same location are serialized. (Writes to the same location by any two processors are seen in
the same order by all processors.)

Consistency

determines when a written value will be returned by a read.

If a processor writes location A followed by location B, any processor that sees the new value of B must
also see the new value of A.

m Migration: A data item can be moved to a local cache and used there in a
transparent fashion. Migration reduces both the latency to access a shared
data item that is allocated remotely and the bandwidth demand on the
shared memory.

m Replication: When shared data are being simultaneously read, the caches
make a copy of the data item in the local cache. Replication reduces both

latency of access and contention for a read shared data item.

51

» Causes of Cache coherence problems

* In modern parallel computers, processors often have Cache. Memory data
may have multiple copies in the entire system. This leads to the cache
coherence problem.

« Cache coherence protocol

* A set of rules implemented by Cache, CPU, and memory to prevent
different versions of the same data from appearing in multiple Caches
forms a cache coherence protocol.

* Bus snooping protocol
* Directory based protocol

» For UMA: Snoopy coherence protocols

* In the snoopy coherence protocols, all processors snoop the bus. When a
processor modifies the data in the private cache, it broadcasts invalid
information or updated data on the bus to invalidate or update other

copies.
Shared Memory Private Memory '- -
CPU | |cPU CPU [| CPU
crul| [crul | ™ M M
P I __IBL
Cache
BUS BUS BUS

« For NUMA: Directory protocol

* The directory protocol uses a directory to record which processors in the
system have copies of certain storage blocks in the cache. When a
processor wants to write a shared block, it sends an invalid signal to those
processors that have copies of the block through the directory in a "point-
to-point” way, so that all other copies are invalidated.

Y
I Local Bus I Local Bus

Directory Directory

Interconnection Network

Local Bus

52

« Snoopy coherence protocols

Contents of
Contents of Contents of memory
Processor activity CPU A's cache | CPU B's cache | location X

0

CPU A reads X Cache miss for X] 0
CPU B reads X Cache miss for X] 0 0
CPUAwritesaltoX Invalidation for X w1 0
CPU B reads X Cache miss for X 1 1 1

An example of an invalidation protocol working on a snooping bus for a
single cache block (X) with write-back caches.

Snoopy Coherence Protocols

» Write-through cache coherency protocol

* While writing the data in the cache line, the content in the corresponding
memory is also modified, and the data in the memory is kept up to date at
any time.

» Write-back cache consistency protocol

« The write operation 'does not directly write to the memory. On the
contrary, when the cache line is modified, a certain bit in the cache is set
to indicate that the data in the cache line is correct but the data in the
memory is out of date. Of course, the line will eventually be written back
to memory, but it may be after multiple write operations.

53

Write-through Cache Coherency Protocol

 Four situations when the monitoring cache performs read and write
operations according to this protocol

Local Request Remote Request

* There are many changes in the basic protocol of write direct Cache
consistency

 Whether to use Update Strategy or Invalidate Strategy for remote
write hits

« Whether to transfer the corresponding word into the cache when the
cache write is missing, this is whether to use the Write-allocate Policy.

Write Invalidation Protocol

three block states (MSI protocol)
* Invalid
» Shared
indicates that the block in the private cache is potentially shared
* Modified
indicates that the block has been updated in the private cache;
implies that the block is exclusive

protocal: 1Y

54

Write Invalidation Protocol

State of
addressed Type of
Request Source cache block cache action Function and explanation
Read hit processor shared or normal hit Read data in cache.
X modified

Read miss processor invalid normal miss Place read miss on bus.

Read miss processor shared replacement Address conflict miss: place read miss on bus.

Read miss processor modified replacement Address conflict miss: write back block. then place read miss on
bus.

Write hit processor modified normal hit Write data in cache.

Write hit processor shared coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss processor invalid normal miss Place write miss on bus.

Write miss processor shared replacement Address conflict miss: place write miss on bus,

Write miss processor modified replacement Address conflict miss: write back block, then place write miss on
bus.

Read miss bus shared no action Allow memory to service read miss.

Read miss bus modified coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate bus shared coherence Attempt to write shared block: invalidate the block.

Write miss bus shared coherence Attempt to write block that is shared; invalidate the cache block.

Write miss bus modified coherence Attempt to write block that is exclusive elsewhere: write back the

cache block and make its state invalid.

55

Write Invalidation Protocol

CPU read hit

CPU read 5“:"9‘::
Place read miss on bus (read on "fvc}
CPU
CPU write read
miss

Place read
miss on bus

Place write
miss on bus

Exclusive
(read/write)

Cache state transitions
based on requests from CPU

CPU write miss

Write-back cache block
Place write miss on bus

CPU write hit https://www.youtube.com/watch?v=gAUVAel-2Fg

CPU read hit State Transition: Refer to previous table

cache F1R 25 |a)&H P] IAREHR ARSI A9 [E) 7R

MSI Extensions

* MESI

xclusive: indicates when a cache block is resident only in a
single cache but is clean

exclusive->read by others->shared
exclusive->write->modified

add figures?
refer to https:/www.youtube.com/watch 2v=0L GEtXV4U3I

MESI writes exclusive to modified silently, without broadcast on bus

Write-back Cache Coherency Protocol

« MESI protocol: It is named after the initial letter of the four
states used in the protocol. Each item in this protocol is in one
of the following four states:

 Invalid: The data contained in the cache item is invalid.

« Shared: This row of data exists in multiple cache items, and the data
in the memory is the latest.

» Exclusive: No other cache items include this row of data, and the
data in memory is the latest.

* Modified: The data of the item is valid, but the data in the memory is
invalid, and there is no copy of the data in other cache items.

e (XEXH memory —FX

MESI protocol state transition rules

Read Snooping Hit

Write Snooping Hit I

) 0 / Exclusiv
y Read Miss (with sharing) i _ (=]

Invalid

Read Hit

Write Shooping Hit

: Write §nooping Hit | Snooping Hit

Read Hit Modified |« — Shared {) write Back to Memory
Write Hit - @ tineFil
Write Hit l) Read Hit | ‘ € Read then Modify
@ Invalidate

57

MESI protocol state transition rules

Basic MESI
Local Protocol

Read ..
Ramote Invalld
Read .

Local
e

White

_Remote
Write >

Modified

% cache , MIBEXLMY, SHE

B A Cache PO EREZEN AT

CPU ;f@iaSEdk ot

Meltdown & Spectre

58

种太阳
Highlight

HXER

B%F (Cache) : CPU MIFEZ BB ERIHTR

- FiEEREEE. FIBFERMARBEER [CPumTE
- —BTNGE | REEZHHE / —_— \
« FRENANEERREE—REFE LI GEER |
. SRR LREILR ES t]
EENEEREENEETN AR FNEERENSTEEZEF T
THEHENEER HEEHRE, SRBESSA. 57 .
AR EFHNNTERAE SRR EEREINF L SRRt sE | TR
BRI LABESFICPU |, &2ISEET .
B B2 4h3EEE ghmeE2 :_ i;ET | 22 :_i;E;]
R — | [— |
= - | &5
WBEEEE pEEEEsity N S et

9T

Meltdown HEfE{Elinux, macos, windowsZFF0S L , FAHintellCPURH ,
s TPEMERORRS | BEtRIEE AR ERFRE DR ENAEZSEMNEM AR H R
FrsE, HiaEAREETRIAT Intel CPURELFRRTHEAR | B X AITFAI00 KRS
EEEE T —MUEERT , BT TR ERRZENERRES , B TH -
BSEIRRSNR | BEUREF SRR AEFTUSII SR TRARY adown
ATF | IENHEAIHEE,

Spectre MREIA T AR AEFZ BREE. RIARRIRE TN
#1417 (speculative execution) , IXE—HEEA , (IERSHENEFRE
d} BRNEIEANTITE, XMRANBRITETRAESFITEER | 28X
&2 SRR RE R A RER. R | Inteh @A RIS AR AL
FEFSHRRGZATEL T | IXEE & T LA RS R ik
Spectre LR AR,

59

CPURTFIRIE S 1T

HhiTHES1, HEFRSAT
iy ERiE%$1
HiTH$2, HEEESIHR

s ERiES

%
fiR
i
1T
I}
b4

HiTHRS3, WWIESIEHE

M EmEBICPUE TP EXiES3

EAUE R PR MR fESaEmE

i]
&
BA
2|

HiTIES1, FHEERHS2AR
Eiaae

MiTiES2, HEFESIFHR
Epsis

EXHE41

ERES2

S I
BZEHEs

FEES3

FLEg) ot

CPURTFIRBESIH

EEMLEEE]
ial CPUFTF R

MFEAFRNHITEERRbIERE | £
FRCPUBITIS B IES4F RN TFINEA
PR TIE<S3IRBREBIERRIT . MR
MARFRIERFIEIX MRS ARRILARA
REEEGEEN. DEESIHRARHE |
BPATEIT | BIEL4FRNRTEE
EMEEICPUERFS , X—ERSHIES4
BO{SENNEARFA PRI ATREEE | 12K
FREDHSMFRICPUEFH , ERCPU
RERFISEEX DS RN

A% MCPUSZIMUNIRESHATF
EICPUERFAIMNEL | SLRRES4FIRBHRE
YT . BERERGRF R AR ER.

fecpuini

HETb T HE

LA AT LA MiEARFE
3] i

DN B 25

CPUEFIEMTRFRATSAN , REREANEIEREICPUSFa+RAFZRTENHIANIR , FEA
FRAEFF RIS ERIRIFIRZAT SR | BILCPURMIXMEEBRIREREAN , ERNREHIEILISE

CPUETFPHMER | ARAIXMIBIERIFIERIA,

60

EERGERF

Sz A Hcache SUEHE , NTIEH
%7 CPUSHFSIEEEZ MF/E, Mcache
SRRSO AR 25 , EENSER
HIERFIFCPUEE S RO A
5, WTIZHEBNILCPUSERIMIE , AR
ORI ERIEER NS | P ERE R,

SIFCPUBRHIISTE , ERFSHIRES
EEFAERHIEN , BIEMCPUBEHIOMIE
IRIFEIBSTFEEr AT | SHWIEMANEE ; K5k
| EATLET SEHS R CPURIERY,

Meltdown Eif[REE

Gl & RN
e
RN S

HERMNE
& B
7T e
SR, 8
FaRwEN
B4R MU T
LY

e WcPukniE, REAR e

CPURYRTF B AR LLifiE)

T MEE A

RPERFFE R

HEEFTR

MeltdownI{ R BT CPUSELFRHIT (out-of-order execution) BY4FE |, KRN
BRABREHRINATRE , FE—MUNEEEBEHERPRRIEE T ARG SR

T3iZR A% AE.

ELEFPTRIEACPURNRE LIS ST ESFHFRERIR , LLANRFZERT , CPUAS
EHEESEL MEFBAERATEREAREHITRERES. XAXMBEMTIHE
BENBIFIAEER , NTDIRF 7 CPUMRE. TEXFRELFHIITRICPUL |, I8SRIBITHARZNR
FriffTiY. LEAN/SHEAIES RIREERIEIE SHUTERZAIMFAHIT. &, ATIRIE
BEFENIERYE 83 retirement B ARINFHITH , ICPUNRZIREREES
retirementBf A7, XHEFNERE , HCPURRE—IES#ITReREZH , —5fD
Eizis< EEES S BT CPURELFRTIHIZETHT.

61

Meltdown IXEidE S MERBTAHRIETT -

In-order

Out-of-order '

In-order |

Meltdown 361

;rex = kernel address
irbx = probe array

3. mov al, byte [rex]

4. shlrax, Oxe // NAF 2oy 4KB. 3% rax {ii9E 4096, {
probe_array(rbx[al®*4096])

5. mov rbx, gword [rbx + rax] //FUil, A AT al i, T B AT A A D
CPU #&4¢r

MeltdowniBREFIAISIEE4NER ¢

®

1) IBSERENES ;

2) ELFPUTIRIES | BSOS BFIE L3RRI NS TRE A FHATVT | 1895
SRELRNrbxEEETTRATERTUINEEICPU Cache ;

3) X2)RERHTERHAY , X3-5FESHITEERN , RILAEE , 2EFSRBTIRESE
R, IECPURTRELFHITZRIRRT , (HEHFREWIKECPU CachefSAT ;

4) BYEFISERE , AUNEHINHbx[al*4096] , HTFZMIBEHNCETEEFY EEL0a
B H—MNEREIT T RESEE | ENEAFIHGAEE T |, AT HEHRRPRZA

A | Fetch |
v 1) KBRS | REFHEIRITEPEReservations
I Decode J Stations ;
| Dispatch]
- et
o 2) ALFRITHRS | fREFE—IEEFIG
g
=
{--- + Ao ciCunpletias
Buffer 3) iB{kHiRetired Circle , EFHIFIERFFIREEHE
| v] B (nehbAEREIREE) | EEERIISFSE,

62

Spectre EiRRE

SpectreIEF B 7 CPURIFRBI T R A TIE. FRBITREBIM—FPCPURLSS
., EDHESHITE , BT OXIESHITARFERNFZIN (LB CPUEE]) , &H
IS SHUTEERZEI . CPUSTRINB— N e miz!T , IREMERANIESHRBHIT | LA
IERCPUIESAUKERIMERE.

CPURIFRIH T 2B 5 < Fulll&t(BPU)#{THI. BPUETE 7R N8 SH&IAHh
TSRS BkEERVER. CPURITRIHATIBEID USSR , SRIEBPURITTNILE Rt THk
B, STRUHTRIFINERE TRUSTRERESEER | CPURIRKESSHER. A
M, SELFHRITEL , FTMURTCPURFIINSHREE. SpectrefIMeltdownITH{E
X—ra_EECEEEALL,

Spectre IHZIE

Spectre i EZ D A="HE :

> JJIECPURISDSIRNETT (BPU) , EEAEEITRIAR BB SH TFERNTTNHIT ;

» T TEESCPUSEIARIAYEI AR ZSIEENEICPU CacherR ;

> BEIEFWNEERGE STLARNES—NERTTERESRIE | thRIRIRAIAERFMAECPU
Cached? , \TTHERIHHEURIRES.

Spectre LG
1. if(x<arrayl_size){
2 y=a;rray2 [array1[x]*256];
3. //do something using Y that is
4 //observable when speculatively executed
5.}

63

RREENE

1) FFWIES « BREFUHAAT,
[BIRR : FETERA CPUSESAECEhI{E,

2) IWAHEATIEIERS S | BN SRS RR B GRS SNEALES.

(IR . FRERRE(EIERE,

3) MRBIEEIELES

)RR : (E4MERFRTRERTE LEHENAA TR I ENIATAEEY , (EXSARATERIRERE,

Meltdown & Specter

1)

2)

Meltdown

Spectre

Meltdown :

Spectre

RHELFFAT
{9 TS SEIHENAA T

FRAT Intel b IEFRIFERVRTIRR | ZiRRASEHEUMEHRTHRESTLIRE
REFRP. NBFPZEDEREAT XEEasSHEE BREREH
KfnZal bR GRS REEFEE T RRAEIATFIAE.

. SpectreRUFIBMEEEXRS , WOZFUURFIAE , TieRSHHAE , EE

FRAS |, BEATAL , 635 AMD, ARM. IntelETERIIA S £k HRSRERIFT
ZEE. S, WIS ETER Meltdown ITHAKAISERRN T HARER 1E
Spectre 5.

64

IRER

BBl VMware Workstation11.0.0
Emﬁ REiniEs ubuntu-16.04.3-desktop-amdé4.iso
AEiEE 1 Linux ubuntu 4.13.0-41-generic
RifRE2 CentOS-7-x86_64-DVD-1708.iso
PEkR#2 Linux localhost.localdomain 3.10.0-693.el7.x86_64
YE RS Intel (R) Core (TM) i5-7300HQ @2.5GHZ

» CVE-2017-5753 &S (SpectreZEfi1)

oml: ERIATH A

R AE MBS % 88 g R BRI L, 1% TR 28 LFENCERR D 5| A\ 24 AR
ARG s 2

R . L2 T
» CVE-2017-57154r$3EN (Spectre®ff2)

owm: N

AR I HACED BRI BT RROERD, N h TN 4 248 F LARAPBTR Gl Bl 3) 2
G ST 3D

GfR2: 15 cretpoline” BIAGiIEHE, M ©EFRIERMARERSE

EAOTERERI . SN, S R2, BAREGRTCPU

F B il > CVE-2017-5754iRSIRETEME (Meltdown)
B, A
S EHA (ERAPTI/KPTIXNT) , BEHAZELHE 7 SN EmEEmE: K35
> CVE-2018-3640iRiR AR B F1FaRiKEL (¥ fk3a)
;. TBC
Gef: DURGYE R SR aERem. T BB AT
> CVE-2018-3639RGH A HEEEE (kd)
oW [EANTHEATE GRAET AR CRF D
. MOSE R+ R N e B RO B AR . KEh %

http://mdsattacks. com/ diagram
[ot) et | | i e S T A -~ e~ S
& (1) Front-end 3 (3 Memory Pipeline || ' (Z) Out-of-Order Engine :
i Instruction i icache [| [5 L2 Cache ¥ :
i Predecode & Fetch 2ke |53 256 kiB 1 :
H (16 bytes) v gway |&||= A-way i1
i &MOPs i rtructon Y Execution Units i
s H P 1] it
LA Instruction Queue . ca:‘r‘:‘:‘ras I @ '
P (2x25 entries) ' po INTALU] : ;
H Macro Lo L NN i .
P ” 5 AW ! + CPU cPU
' = e e e - vEC |ii Core Core
Bt " H SHUFFLE| 11 & .
b oo Branch Vo : ol System Agent
i £ —SwayDecoder | | pregicion | | igage | a5 Physical : (1730 EE \ Display
b 2 B | M allwll vl » Unit | (72 entries) Register File : b — = Controller
o Q H 1 I " "
P %% 13 13 13 13 13 Het:"{'}“‘k | — Integer g [NIIGUL o LLC $jice | | LLC Slice
B] ||a||®| =" uffer ! Registers = VECALLLY (o 3
i E__ Branch || | (180 entries) § : ol LLC Siike | | LLC Stice
i T E T T |[Target Buffer| . T H :
= =] I branches ' o L M
ER RN R = ‘L/ e || § e BER AR R RN 1.8 ' T
= o
— B won| oy | fmm'eﬁi WOF Scheduler e e o]
Retirement Unit Unified Reservation Station (97 entries) H .
H e pos
b : anary Shadow P ’
i Stack Engine Aliocation Queue | | m-| 4uoPs o
Hit z {2xb4 entries) H
bt 5 Micra | | ' &pops Register
i “ |Fusion| | 171 Allocation & Renaming

65

66

