RREHME >)IR

Great Architecture Ideas

15 3% —— 30 points

Paaxly

6 JEEZ —- 70 points
LK. LHERRIT
BELEHIT. ELF MEARE

memory hir cache —& K

cache FUITHEFIBEE, MIARES

Great Architecture Ideas

Great Architecture Ideas

* There are 8 great architectural ideas that have been applied in the
design of computers for over half a century now.

» As we cover the material of this course, we should stop to think
every now and then which ideas are in play and how they are
being applied in the current context.

Great Architecture Ideas

* Design for Moore's law.
* The number of transistors on a chip doubles every 18-24 months.
* Architects have to anticipate where technology will be when the design of a system is completed.

*Use abstraction to simplify design.
* Abstraction is used to represent the design at different levels of representation.
* Lower-level details can be hidden to provide simpler models at higher levels.

* Make the common case fast.
* Identify the common case and try to improve it.

* Most cost efficient method to obtain improvements.

* Improve performance via parallelism.
* Improve performance by performing operations in parallel.
* There are many levels of parallelism — instruction-level, process-level, etc.

CPU Performance

In order to determine the effect of a design change on the performance experienced
by the user, we can use the following relation:

CPU Execution Time = CPU Clock Cycles xClock Period

Alternatively,

CPU Clock Cycles
Clock Rate

CPU Execution Time =

Clearly, we can reduce the execution time of a program by either reducing the
number of clock cycles required or the length of each clock cycle.

Instruction Count and CPI

* Instruction Count for a program
* Determined by program, ISA and compiler

* Average cycles per instruction (CPI) CPI =
* Determined by CPU hardware

* If different instructions have different CPI
* Average CPI affected by instruction mix

CPU Clock Cycles

Instruction Count

CPU Clock Cycles = Instructions for a Program XAverage Clock Cycles Per Instruction

CPU Time = Instruction CountXCPIxClock Period

Instruction Count XCPI
Clock Rate

CPU Time =

Amdahl’s Law

Amdahl's Law states that the performance improvement to be gained from using some
faster mode of execution is limited by the fraction of the time the faster mode can be
used.

Amdahl's Law depends on two factors:
* The fraction of the time the enhancement can be exploited.

* The improvement gained by the enhancement while it is exploited.

Af fected Execution Time
Amount of Improvement

Improved Execution Time = + Unaffected Execution Time

Make the common case fast!

* Example: multiply accounts for 80s/100s
* How much improvement in multiply performance to get 5 X overall?

= 80 +20 Can’t be done!

种太阳
Highlight

种太阳
Highlight

种太阳
Highlight

¥ 1.4 Quantitative approaches

Amdahl’s Law

* |Improved ratio: In the system before the improvement, the ratio of the execution time
of the improvement part to the total execution time.
* |t is always less than or equal to 1.
* For example: a program that needs to run for 60 seconds has 20 seconds of calculation that can be
accelerated,
Then the ratio is 20/60.

* Component speedup ratio: The multiple that can be improved after some
improvements. It is the ratio of the execution time before the improvement to the
execution time after the improvement.

* Under normal circumstances, the component acceleration ratio is greater than 1.

* For example: if the system is improved, the execution time of the improved part is 2 seconds,
Before the improvement, its execution time was 5 seconds, and the component acceleration ratio
was 5/2.

Chapter 1 —Fundamentals of computer design — 65

Amdahl’s Law

* Example 1.1 Increasing the processing speed of a certain function in the computer
system to 20 times the original, but the processing time of this function only accounts
for 40% of the running time of the entire system. After adopting this method to improve
performance, how much can the performance of the entire system improve?

Answer:
* Fraction . panced = 40%
* Speedup enhanced = 20

1
Speedup= — 4, =1.613
06+ 24
20

«/E"

§ 1.4 Quantitative approaches

Amdahl’s Law

* Example 1.2 After a computer system adopts floating-point arithmetic components, the
floating-point arithmetic speed is increased by 20 times, and the overall performance of
a certain program of the system is increased by 5 times. Try to calculate the proportion
of the floating-point operations in this program.

Answer:
* Speedup gy =5 : 5
. SPEEduP enhanced = 20 (1 . Fractionl \d E;::OE

Fraction = 84.2%

Chapter 1 —Fundamentals of computer design — &7

种太阳
Highlight

种太阳
Highlight

The Classic Five-Stage Pipeline for a RISC Processor

* A Simple Implementation of RISC-V Dependences are a property of programs.

* Instructions Dependences * Pipeline Hazards
* Data Dependences * Data Hazards
* Name Dependences ’ * RAW
* * Anti-dependence - * WAR
* Qutput-dependence 4 * WAW
* Control Dependences - - » * Branch Hazards

* Structural Hazards

Hazard are properties of the pipeline organization.

Data Hazards

. TR FADD.D F6, FO, F12
Read after write: RAW FSUB D i FE iaa
* Write after read: WAR FDIV.D F2, 6, F4
FADD.D F6, FO, F12
» Write after write: WAW FDIV.D F2, FO, F4

FSUB.D F2, F6, Fl14

Dynamic Scheduling

Idea: Dynamic Scheduling

Method: out-of-order execution

Scoreboard FKitBAMIRE HEH

Registers

Data buses

rEermm F
“==l FPmult .

Control/ I Control/

status slatus

Dynamic Scheduling with a Scoreboard

Dynamic Scheduling: Scoreboard algorithm

FLD

FLD
FMUL.D
FSUB.D
FDIV.D
FADD.D

F6, 34(R2)
F2, 45(R3)
FO, F2, F4
F8, F6, F2
F10, FO, F6
F6, F8, F2

< € <€ <= <

种太阳
Highlight

Function Component Status

Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer yes Load F2 R3 no
Multl vyes MUL FO F2 F4 Integer no yes
Mult2 no
Add yes SUB F8 F6 F2 Integer yes no
Divide vyes DIv F10 FO F6 Multl no yes

Rj, Rk : “yes” ——operand is ready but not read;
“no” & “Qj =null” ——operand is read ,
“no” & “Qj != null” ——operand is not ready.

- Register Status

FO F2 F4 F6 F8 F10 F30
Qi Multl Integer Add Divide

Tomasulo’s Approach %

From instruction unit
Instruction FP I'tﬂ-ﬂtﬂl
quete
load/store
operations
FP operations
rand buses
Store bufTers Ope
1 Load bulTers
6
5 Operation bus
4
3 Reservation
2 ; stations 2
1 1 1
| I
Data Address
Memory unit FP adder FF multiplier
l. l Common data bus (CDB) l

The basic structure of a floating-point unit using Tomasulo’s algorithm

RIA=TINERER, MITRARER

种太阳
Highlight

Tomasulo with Reorder Buffer - Summary *

FLD F6, 34(R2) 1

FLD F2, 45(R3) 2 4 5 6
FMUL.D FO, F2, F4 3 6-15 16 17
FSUB.D F8, F6, F2 4 6-7 8 18
FDIV.D F10, FO, F6 5 17-56 57 58
FADD.D FG6, F8, F2 6 9-10 11 59

* In-order Issue/Commit, Out-of-Order Execution/Writeback

Y §
Hardware-Based ROB
A From instruction unit
Speculation %
. Instruction g ll)ata
The basic structure of a —_—
. . ’ load/store FP registers
FP unit using Tomasulo’s operations -
. operations
algorithm and extended .
to handle speculation. 3 Lond buffers
5 Operation bus
4
3 4B
Store f f f
Store data| | *ddress
*| Address
Memory unit | FP adder | | FP multiplierl
Load data Common data bus (CDB) |
B=E

REFEARE B EIXE Memory hirerarchy

种太阳
Square

Memory Hierarchy of a Modern Computer

System

By taking advantage of the principle of locality:
* Present the user with as much memory as is available in the cheapest

Secondary
Slerage
(Disk)

100s 10,000,0005 (10s ms)

technology.
* Provide access at the speed offered by the fastest technology.
Processor
Contrel
Second Main
-~ ': Level Memory
mmulh 2 A Cache (DRAM)
= (SRAM)
Speed (ns): s 10s
Size (bytes): 100s Ks

What is a cache?

* Small, fast storage used to improve
average access time to slow memory.

* In computer architecture, almost
everything is a cache!

* Registers “a cache” on variables — software
managed

* First-level cache a cache on second-level
k cache

» Second-level cache a cache on memory
* Memory a cache on disk (virtual memory)
* TLB a cache on page table

* Branch-prediction a cache on prediction
information?

Ms Gs

Smaller fast

AN

L1-Cache
(On-Chip)

/" L2-Cache (SRAM) "\
/" MainMemory ORAN) N\,
AN

Bigger
/ Disk ,Tape, ect.

Four Questions for Memory Hierarchy
Designers %

Caching is a general concept used in processors, operating systems, file systems, and
applications.
There are Four Questions for Memory Hierarchy Designers
* Q1: Where can a block be placed in the upper level/main memory?
* (Block placement)
* Fully Associative, Set Associative, Direct Mapped
* Q2: How is a block found if it is in the upper level/main memory?

* (Block identification)
* Tag/Block

* Q3: Which block should be replaced on a (Virtual Memory) miss?
(Block replacement)

* Random, LRU,FIFO

* Q4: What happens on a write?
(Write strategy)

* Write Back or Write Through (with Write Buffer)

Q4: Write Strategy %

* When data is written into the cache (on a store), is the data also written to

main memory?
* |f the data is written to memory, the cache is called a write-through cache
* Can always discard cached data - most up-to-date data is in memory

* Cache control bit: only a valid bit
* memory (or other processors) always have latest data

* If the data is NOT written to memory, the cache is called a write-back cache
* Can’tjust discard cached data - may have to write it back to memory

* Cache control bits: both valid and dirty bits
* much lower bandwidth, since data often overwritten multiple times

* Write-through adv: Read misses don't result in writes, memory hierarchy is

consistent and it is simple to implement.
* Write back adv: Writes occur at speed of cache and main memory bandwidth

is smaller when multiple writes occur to the same block.

种太阳
Highlight

种太阳
Highlight

Summary

Read Cache Write Cache*
hit miss
Read through Write-through Write allocate
write is done data at the missed-write
synchronously both location is loaded to cache,
to the cache and to followed by a write-hit
the backing store operation.
Read allocate Write-back No-write allocate
writing is done data at the missed-write
only to the cache location is not loaded to

cache, and is written directly
to the backing store

How to Improve

Hence, there are more than 20 cache optimizations into four categories:
Yo AMAT = HitTime + MissRate x MissPenalty

1.Reduce the miss penalty
——multilevel caches, critical word first, read miss before write miss, merging write buffers, and victim
caches

2. Reduce the miss rate
——larger block size, large cache size, higher associativity, way prediction and pseudo-associativity,
and compiler optimizations

3. Reduce the miss penalty and miss rate via parallelism
——non-blocking caches, hardware prefetching, and compiler prefetching

4, Reduce the time to hit in the cache
——small and simple caches, avoiding address translation, pipelined cache access, and trace caches

10

种太阳
Highlight

种太阳
Highlight

Average Memory Access Time %

* Average Memory Access Time

Whole accesses time
All memory accesses in program
__ Accesses time on hitting+ Accesses time on miss

All memory accesses in program

Average Memory Access Time =

= Hit time + (Miss Rate X Miss Penalty)

= (HitTime,,, + MissRate,,, x MissPenalty,,,) x Inst%
(HitTime,,, + MissRate,,,, x MissPenalty,,,,)x Data%

AluOps xCPI, + MemAccess

CPUtime = IC x [

Inst Inst

x AMA T) x CycleTime

cache ITE 7 EEE ABHH /)&
Learn from History
* Translation lookaside buffer (TLB)

a special

that keeps (prev) address translations
* TLB entry

--tag: portions of the virtual address;

--data: a physical page frame number, protection field, valid bit, use

bit, dirty bit;

TLB B

11

种太阳
Highlight

种太阳
Square

种太阳
Square

种太阳
Square

TLB Example %

* Opteron data TLB
Steps 1&2: send the virtual address to all tags

Virtual page Page

Step 2: check the type of mem access

number offset i i ; X
<36> : <12 against protection info in TLB
I
@ @:1} - <1><1> <36> <28>
V RW US D A Tag Physical address
<
=
-
(Low-order 12 bits
— 1 1 [[1 | J | of address)
l R <J2>
g 7 40-bit
@ﬁ’{ 40:1 mux l <28> @ physical
L - address

https:/iwww.youtube.comfwatch Pv=95QpH.JX55bM

(High-order 28 bits of address)

TLB Example

* Opteron data TLB

Steps 3: the matching tag sends phy addr through multiplexor

Virtual page Page

1
|

<1><1> <36>

wa Us D A Tag

<28>
Physical address

number offset
<36> 12>
|
@ @ <1>
\')

=
|-
| i
—

I

g

® —

(Low-order 12 bits

} | of address)
-:J2>
: 7 40-bit
40:1 mux l <28> @ physical
L - address

(High-order 28 bits of address)

..] =™

12

种太阳
Highlight

TLB Example

* Opteron data TLB
Steps 4: concatenate page offset to phy page frame to form final phy addr

Virtual page Page
number offset

<36> <12>
| | F
@ ®<1> e <1><1> <36> <28>
V RW US D A Tag Physical address
&
=
<
(Low-order 12 bits
—_| | [1 | | | | of address)
L... <12>
' .
= 7 40-bit
@ _.{ 40.1[mux l <28> @ physical
/

— address
(High-order 28 bits of address)

Address Translation:
one more time, with cache

13

I & RTEREYL-L1D Uusiuu-uy .22

| Virtual address <64> |

l

[Virtual page number <51>] Page offset <13>]

|

|TLB tag compare address <43>] TLB index] | L1 cache index <7> |Blndi offset <6> |

L

To CPU

TLE data <28>

TLB tag <43> L1 cache tag <43> L1 data <512>

L1 tag compare address <28>

[

64-bit virtual address
41-bit physical address | Physical address <41> |

page size: 8KB I I I

two-level direct-mapped CagH R compse aatress <19, L2 cache ndox <165 Bluck ofset <]

64-byte blocks [Tapiy
L1: 8KB

* L2: 4MB
TLB 256 entries L2 cache tag <19>

Address Translation

L2 data <512>

28, DFFE, TLB #8%, cache #8%, address Translation

L]

A

Summary

* Memory hierarchy
* From single level to multi level

* Evaluate the performance parameters of the storage system (average price per bit C; hit
rate H; average memory access time T)

* Cache basic knowledge * Reduce miss rate
* Mapping rules
* Access method Reduce miss penalty *
* Replacement algorithm
* Write strategy Reduce hit time

* Cache performance analysis

* Virtual Memory & TLB & Cache *

File System —1& K&

14

种太阳
Highlight

种太阳
Highlight

Exploiting ILP Using Multiple Issue and
Static Scheduling

=== -1

0 1 2 3 4 5 6 7To 1 2 3 4 5 6 T
Normal Pipeline Superscalar

]]
3 Operations

0o 1 2 3 4 5 6 70 1 2 3 4 5 6 T
Super pipeline VLIW

Classes of Parallel Architectures

according to the parallelism
in the instruction and data streams
called for by the instructions:

SISD, SIMD, MISD, MIMD

15

16

