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Introduction

FRERFN e FH
iRl | Interrupt

o HNEB I0 REBSHBEEM CPU BHTRME, BISHUTE
o WEHERS:

o CPU HIERE-RUTZHIES

o I0 BEEEMHELRFHHEHIRRXES

o CPU KIVEFHIE pending

o CPU ¥ pc REATHTHEFRAILE

o H{HERD:
o BHEMINIERFN T FRTLIEERF (Interrupt Service Routine, ISR)
o Xigrhlilfi (FHEELEFMTHIRHERR HEIRITESH CPU Bl pc)
o IMBEHRIEMHAFET, FH dispatch ZHEEAIMERER (interrupt handler)
o LTRIAE:

» FEFEMERIERE LT (pc FRIIFER)
» WMERIRE ETX, BEITIRRER

PaBH | Trap

o trap, XMEehlT (soft interrupt)
o ME{chiT, EEEMATTAE, BIMREMASEELE
o B—1MRLHEM (asynchronous) , BIFGEFRN HIRAYRT E]
o trap HEETTE, FTREREITHIIT EIREE B B HEE SRR
o 2—/NEZhdiE (synchronous)

o f5laN: RESEA, divided-by-zero H&E..
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BERAZE interrupt-driven B9

o 4EFRHOTRHT . THRTESRET

o ERFTALHAIEEFRT, IHRERFNIZBENSET, T, BE

o BUMREEHEHEHWT%, WERSEFS—HETHERER, BERABEETISNAER

BRSHEFARITERREHREETRR, ENFEENEHYNING, SETETENSHRERERZER
& (REERA)

FRitratiE

o ST CPU HUTIRESHHRE
°o 1§ pc FHFHREFEATH
o FRFPRLIEAE
o vectored interrupt system:
v BTSRRI
» ER—FEEEIE, FEERMORFHES N RRTS I R A IR
» EERRIEGITSRIERE, BEERIRINAIEERH

o polling:

» FrERUERBAE RS —ROMtEAE
» EBERE S RETIRSE, RENTLIES

e 0S handles the interrupt by calling the device’s driver (iEFIRINIERR)

RREZREEAM. MYTHAZ, FERERNEFHERERANTEEIN, ATRett, BERE
ENEFRIARERD ISR RIS,
o SEFEHRERITRE

o & pc FEHFEE, BERIEHT
o HEWEHEHENSFR, SWEE

I/0: from System Call to Devices,
and Back **

e A program uses a system call to access system resources

o e.g., files, network

e QOperating system converts it to and (issues I/0 r*equests)

o I/0 requests are sent to the device driver, then to the controller

o e.g., read disk blocks, send/receive packets...

e 0S puts the program to wait (Csynchr‘onous I/O)) or returns to it without waiting
((asynchr*onous I/O))
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o 0S may switches to another program when the requester is waiting

o RFI/0: BHTI/ORIEHERbLockiZLRIEKI/0RIER, FRL/05R (HRESBEREEITA—MEF)
= B, ZA, BfE

1=

£1/0: BIfEI/0iRBTek, MAMEIETIRER, S1/05ME, FITRRESEXcallbackElER

% 1o

» B, BRTHEAEMNEIEKE

‘ BMEREEI/0, CPUEAREBSEFIRES. E—#EEZER, CPURLIEES—#E

I/0 completes and the controller interrupts the 0S

0S processes the I/0, and then wakes up the program (synchronous I/0) or send its
a signal (asynchronous I/0)

‘ —MBELEmT, —METmL

FPSIE SR EING
o BIIRSLIEA (system call) RK&EIF CPU ERIEIME

BERZBIT MMIO (Memory Mapping I/0) SRIBMIME

Direct Memory Access | DMA

DMA is used for high-speed I/0 devices able to transmit information at close to

memory speeds
o e.g., Ethernet, hard disk, cd rom...
e Device driver sends an I/0 descriptor the controller
o I/0 descriptor: operation type (e.g., send/receive), memory address...

The controller transfers blocks of data between its local buffer _and main memory

without CPU intervention (I25%K)

CPUSHIFREFFERNEERIGHIAER, 55K, MEHINARIZEE. RizERSEIEHILE
IFCPU

o only one interrupt is generated when whole I/0 request completes

iR =R 5> /9% IAIHDDANSSD

o tkan CPU BiLB-RERREE EBREUE
o IEHEE
» CPU BAREHIEMORRZE BRI RAIAF=E L
= HAl8) CPU RMiX—4E, TAGiTHEER
o jEd DMA
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» CPU HIFERH DMA =HIZEEIREAISURER. G2K
= DMA 1EHISESH T RESIRIIRE
= It CPU AILUHTHEIEE
» TRERIEHETRIER] CPU
B

* B DMA FILIEIRE CPU S5MER FHTABEIEIRE

o AR
o EBMIEFEHEBECHY DMA #=HI28, £ DMA 1=HIESHTEUERENIHEE S RYIE N FEREL TIMR
» EIAE DMA EIESSMNOTEME I0OMMU (I/0 RFEEERTT) SsEaLina Ly iE iz

Put it together

Computer SystemfU==E

o m— instruction execution —
] cycle instructions
thread of execution | and
w— data movement — data
CPU (*N)
| 'y l
E -
= a = DMA
2 ] =
[=] ] =
E = memory
W | |
) device !
<M

Storage Structure

e Main memory: the only large storage that CPU can directly access

o prandom access, and typically volatile

e Secondary storage: large nonvolatile storage capacity (XHFIAKEHIEFELL, SIFEHDD

F0SSD)
BRI RF IR

o Magnetic disks are most common second-storage devices (HDD) (FR%II)

= rigid metal or glass platters covered with magnetic recording material
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o disk surface is logically divided into tracks and sectors

o disk controller determines the interaction between 0S and the device

MUltiprocessor Systems

Multiprocessor systems have grown in use and importance

e also known as parallel systems, tightly-coupled systems

e advantages: increased throughput, economy of scale, increased reliability --
graceful degradation or fault tolerance

e two types: (asymmetr‘ic multipr*ocessing) and (symmetr‘ic multiprocessing (SMP))

Symmetric Multiprocessing Architecture

BRiECPUBRIFMEN, HE—RE—HKMcache, RE—RAHE

CPU, CPU, CPU,
registers registers registers
cache cache cache
memory

NUMA

e Non-Uniform Memory Access System

o Access local memory is fast, scale well

HACPUEBECHIfixed memory, {BEFEHImemoryE24i—mEIHT, BICPURILAISBIFFEmemory,
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memoryﬂ memﬂry.l
I [
CPU 0 __intf:c_on:l:a-c_t“ CPU .
“:::t::"
CPU 2 i CPU 3
l [
I"I'I’EI'I'IDI'}!‘: I'I'IE'I"I'IDI'}!‘3

Dual-mode operation

e Operating system is usually interrupt-driven

o Efficiency, regain control (timer interrupt)

e Dual-mode operation allows 0S to protect itself and other system components

e user mode and kernel mode (or other names)

e a mode bit distinguishes when CPU is running user code or kernel code

e some instructions designated as privileged, only executable in kernel

o system call changes mode to kernel(i@dtrap), return from call resets it to user

\—y—

3. ERIESUIIERE BT,

1. PRMEXRATIRE, BBRSEFETHIRERFERZAEIES RSN,

2. EFAMMUER4 (Memory Management Unit | AFEIEERIT) KISESCPUBI TGS RILAAERT
BYpEitit=sE), ERPS TREENDARTEAEI —ERRE

Eban<iZblr, FIFRlr. BCEMMURSIES

Transition between Modes

e System calls, exception, interrupts cause transitions between kernel/user modes

user process

user mode
| | user process executing » calls system call return from system call (mode bit= 1}
| \ F
1 rJ
X r
K | trap return
Sme mode bit = 0 mode bit = 1
3 kernel mode
(mode bit = 0)

execute system call
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Timer

e Timer used to prevent infinite loop or process hogging_resources

o to enable a timer, set the hardware to interrupt after some period

o 0S sets up a timer before scheduling process to regain control

= the timer for scheduling is usually periodical(e.g., 250HZ)

= tickless kernel: on-demand timer interrupts(Linux)

Resource Management: Process
Management

e A process is a (pr-ogr-am in execution)

o program is a entity, process 1is an entity

o a system has many processes running concurrently

FEBEZ AZRER, BIERE—programEAIHEE

e Process needs resources to accomplish its task

o 0S reclaims all reusable resources upon process termination

o e.g., CPU, memory, I/0, files, initialization data

BERFNIZASESEAE—  NIZNCPUEE. memoryiSE. I/0&E.. . S@8ISONERNAX, HEE
e, F—processiziT—ERITEHMFFAIRIBEREE

from Process to Thread

e Single-threaded process has one program counter

o program counter specifies location of next instruction to execute

o processor executes instructions sequentially, one at a time, until completion
HFEZ B IRERY
e Multi-threaded process has one program counter per thread

e Quiz: What are the benefits of using thread instead of process?

FREMHEAEHLZE, WREBLZALE, PBUESREX
SINGFE, SETLBIEE, REEoad/storeBLIREEHATLSIHES,

o —/MHIEREYZANERFETE Tmemory, global data. heap; A~f=stack

o EALEE QEEAIPC

o LAENZAZRIRARREN, RULUERLRZ
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Separate Policy and Mechanism

e Mechanism(#1#l)): how question about a system | /EASCHL

o How does an operating system performs a context switch
AEHREESSSEIARBRIPolicy

e Policy(5ERg): which question
o Which process should the process to be switched

e Any other examples about mechanism & policy?
e Advantages & Disadvantages

o Advantages of separation:

= IR RIRIEE.

= O )

ERFE(TRI0S EF A

o FRFIERIET

RIFRERER. HE7ME

o RVFRFMIMNRIHITIOE

ML (Virtualization) RISB

o BRFSEFRHEIMINETING

o FRFSEFANBCHLUEEEM CPU BR. 10 BRE

BEaTLUEIT syscall k5 0S #3558

Structure

System Calls

e System call is a programming interface(3#[]) to access the 0S services

o Typically written in a high-level language (C or C++)

o Certain low level tasks are in assembly languages
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Example of System Calls

e cp in.txt out.txt

source file »| destination file

4 Example System Call Sequence =)
Acquire input file name
Write prompt to screen
Accept inpul
Acquire output file name
Write prompt to screen
Accapt input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally

o

4

Application Programming Interface |
API

e Mostly accessed by programs via a high-level Application (BHAPIEEBEANRSER)

Programming Interface (API) rather than direct system call use
o three most common APIs:
= Win32 API for Windows
= POSIX API for POSIX-based systems (UNIX/Linux, Mac 0S X)
= Java API for the Java virtual machine (JVM)

= why use APIs rather than system calls?

= portability

Example of Standard API

ZE(FEEreadiXMAPI


af://n402
af://n407
af://n427

EXAMPLE OF STANDARD APl

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The AFI for this function is obtained
from the man page by invoking the command

man read
on the command line. A description of this API appears below:

#include <unistd.h>

ssize t read(int fd, wvoid *buf, size_t count)
I | | | 1 |
return function parameters
value name

A program that uses the read () function must include the unistd.hheader

file, as this file defines the ssize t and size t data types (among other
things). The parameters passed to read () are as follows:

& int fd—ﬂmﬁledascrip‘lmtoberead
* void =buf—a buffer where the data will be read into

* size t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

System Calls Implementation

e Typically, a number is associated with each system call

o system-call interface maintains a table indexed by these numbers

o e.g., Linux has around 340 system call (x86: 349, arm: 345)
e Kernel invokes intended system call and returns results

e User program needs to know nothing about syscall details

o it just needs to use API (e.g., in 1libc) and understand what the API will do

o most details of 0S interface hidden from programmers by the API

API - System Call - 0S Relationship
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Tl
R_ o

i ) i
open ()
user
mode
system call interface t
kernel
mode A
— | open ()
. Implementation
— » of open ()
: system call
retum

System Call Parameter Passing

e Parameters are required besides the system call number(RZFHERS)
o exact type and amount of information vary according to 0S and call

e Three general methods to pass parameters to the 0S({£EZ&%0)

o Register:
‘ HFseon— B —LEANSFEFRES (FER, SUEHENKESR)
= pass the parameters in registers

‘ simple, but there may be more parameters than registers

o Block:

‘ B24EInemory s

= parameters stored in a memory block (or table)

= address of the block passed as a parameter in a register
‘ taken by Linux and Solaris

o Stack:

‘ B8 ArImenory, AILUBIEpopEEERIS
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o

= parameters placed, or pushed, onto the stack by the program

= popped off the stack by the operating system

Block and stack methods don’t 1imit number of parameters being passed

Operating System Structure

e Many structures:

o

o

o

simple structure - MS-DO0S(FC&EHE, AZIERRE)
Monolithic structure(more complex, ERMEZ) -- UNIX(HDFEPSKHEZES)

layered structure - an abstraction

microkernel system structure(8H#Z) - L4

hybrid: Mach, Minix

research system: exokernel

Comparison

[] os
(] App
B Logic

% | (| [

$ o ) (] ] o o |

. | ) m

M

< —— 1

g |m = JI Hm

=2

DOS UNIX MicroKernel ExoKernel

‘ (PR RS
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Monolithic (Z{f) Structure - Original
UNIX | Z{FPR#E **

XS BPEAHRES, RESERUIEN MBS RSERS B ASRAHRD

e Limited by hardware functionality, the original UNIX had limited structure
e UNIX 0S consists of two separable layers
o systems programs

o the kernel: everything below the system-call interface and above physical
hardware

= a large number of functions for one level: file systems, CPU scheduling,
memory management

Microkernel System Structure | A #
*%

BRZRZESH componentBRIAFE, BEEEEENSUHITRE

e Microkernel moves as much from the kernel (e.g., file systems) into “user” space

e Communication between user modules uses message passing

« (Benefits):

o easier to extend a microkernel | BHYE, MAZKERRS, T ENZEGT E— 1 HBERPSE

B
o easier to port the operating system to new architectures | REEERZSHHITE
18

o more reliable (less code is running in kernel mode)

o more secure | TCB (Trust Computer Base) Z/j

* (Detriments):

o performance overhead of user space to kernel space communication | MBEFFEEH K, R

SeH—LEARY function call HIEZHIERFSISHSHTER

e Examples: Minix, Mach, QNX, L4...
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Exokernel: Motivation | HMI#%Z *x*

e To force as few abstraction as possible on developers,

application
program

device
driver

MEessages

interprocess
communication

----------------------------

memory
managment

microkernel

---------

i
messages H

----------------

CPU
scheduling

hardware

%, BURAZATLUEISIEINAER (kernel module) BYSTHITH &,
B8RE, RABEERRETESHIZNEEERE, FESWMEREFEIIRE, LINAPTE—E

In traditional operating systems,

manage system resources

~ —
=

user
mode

kernel
made

only privileged servers and the kernel can

Un-trusted applications are required to interact with the hardware via some

abstraction model

o File systems for disk storage, virtual address spaces for memory, etc.

But application demands vary widely!!

o An interface designed to accommodate every application must anticipate all

possible needs

Traditional OS structure

Network

slow and can't fix it!

sk

Exokernel: application control

Application software can override OS

Network

Disk

Give un-trusted applications as much control over physical resources as possible

many decisions as possible about hardware abstractions.

enabling them to make as
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o Let the kernel allocate the basic physical resources of the machine

o Let each program decide what to do with these resources
e Exokernel separate protection from management
o They protect resources but delegate management to application

e Exokernel give more direct access to the hardware, thus removing most abstractions

I [ [
MNormal Kernel Exakernel
Programs communicate with Libraries or Kemel

Programs can
ammunicate with the
Kemel iardware much more
diracthy

System Call *=*

Examples

fork

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4

5 int main(int argc, char *argv[])

6 A

7 printf("hello world (pid:%d)\n", (int)getpid());
8 int rc = fork();

9 if(rc < 0)

10 {

11 fprintf(stderr, "fork failed\n");

12 exit(1);

13 F

14 else if(!rc) //child (new process)

15 {

16 printf("hello, I am child (pid:%d)\n", (int) getpid());

[ER
N
—
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18 else

19 {

20 printf("hello, I am parent of %d(pid:%d)\n", (int)getpid());
21 +

22 return 0;

23}

e A way to create a new process

e 0dd part

o the newly created process is an exact copy of the calling process | FHESHER
e I — RHFEAIAES
o return twice

o new process has its own memory address space and etc

forkEEA—X, BEMR | —XRHERE—RFHIZRME . T REEREER FHENpid; YFHE
REER0

fork+wait

waitigRHIESFRF FHIZAIZEA

e Parent process can use the wait system call to wait the child process finishes
executing

fork+wait+exec

e Exec is useful when you want to run a program that is different from the calling

program
e Exec never returns

e Why separating fork and exec?

o Essential building UNIX shell
e Shell: a user program

o Wait for inputs

o execute commands: fork, exec, and wait

o Separating fork and exec can make the shell something interesting and useful —
make something happen after fork but before exec
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Process & Thread

Process

Process Concept *=*

e An operating system executes a variety of programs:

o batch system - jobs

o time-shared systems - user programs or tasks

e Process is a program in execution, its execution must progress in sequential

fashion
o a program is static and passive, process is dynamic and active

o one program can be several processes(e.g., multiple instances of browser, or

even on instance of the program)

o process can be started via GUI or command line entry of its name
= through system calls

e A process has multiple parts:

o the program code, also called text section

o runtime CPU states, including program counter, registers, etc

o various types of memory:

= stack: temporary data | IGESEOEGIE: BETE. REERASEH. REMUE
= e.g., function parameters, local variables, and return addresses

= data section: global variables | &2B%TE

= heap: memory dynamically allocated during runtime | E{TEEIEDENRNEF (Eban

malloc)

= security: heap feng shui — how to provide randomness

= Further reading: FreeGuard: A Faster Secure Heap Allocator (CCS 17),
Guarder: A Tunable Secure Allocator (USENIX Sec 18)

o &g cat /proc/$pid/maps ALIEEHENEREGR.
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max

v

[_ argc, argv, envp

—int x;
—int y = 15;

N

~ #include <stdio.h>
= #include <stdlib.h>

int main(int argc, char *;;'gv[]:l {

stack

heap

data

text

/bin/cat

fEin!cat

/bin/cat
[heap]

71 3b4a50c006-71 3Ib4d70c000] -——p J01c0000 08:01 2182132
71 3b4d70c000-713b4d7 10000 r--p B01cH000 08:01 2182132
7F3bdd710000-7f3bad712000] rw-p J001c4000 08:01 2102132
73b4d712000-713b4d716000 rw-p GOGOGOG0 00:00 &
71 3bdd716000-713b4d73c000 r-xp GOGOOOO0 08:01 2102104
71 3b4do00000-713b4d925000 rw-p GOGO0000 00:00 ©
7f3b4d93bEOG-T13b4d93c008 r--p GOG25000 08:01 2102104
7f3b4d93c000-7f304d93d000 rw-p GOG26000 08:01 2102104
7f3b4d93d000-7f3b4d93e000 rw-p GOGOC000 00:00 ©

77 3b4d34c000- 7 3640500000 I--:p GO000000 08:01 2102132

fmwlucalei locale-archive

A1ib/x86_64-11inux-gnu/libe-2.23.50
A1ib/x86_64-1inux-gnu/libe-2.23. 50
/1ib/x86_64-1inux-gnu/libc-2.23.50
/1ib/x86_64-1inux-gnu/libe-2.23.50

A1ib/x86_64-1inuc-gnu/ld-2.23.50

/1ib/x86_64-1inux-gnu/1d-2.23.50
A1ib/x86_64=11inux-gnu/ld=2,23. 50

[stack]

TLE0£3033000-7 1 F3bc4000 rw-p GOGOGO00 00:00 ©
T FFF3bod000-7fFFF3bd0000 r--p GOGO0000 00:00 ©

T1fFFf3bd00e6-T71ff3bd2000 r-xp GOGOGO0G0 G60:00 &
FEFFFFFFFFG00000-FFTFIFFFFFA601000 r-xp DODDODOD 00:00 @

Process State

ERINSHERATBHLUR S ABRRERNHRS R ETR

As

[e]

o

new

running ) :

a process executes, it changes state

the process is being created

instructions are being executed

[e]

[e] [}

ready

terminated

the process has finished execution

Tovarr
[wdso]
[vsyscall]

(Waiting/blocking): the process is waiting for some event to occur

the process is waiting to be assigned to a processor

|

______ T-----_ / int *values;
{ heap 1.; | “lint i;
e i
‘ s j values =| (int*)malloc(sizeof(int)*5))
d.:f ] for (i =E; 1< 5; 'I""iJ ‘l
( data Irfﬁ values[i] = i;
}
text return 0;
N }
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admitted

interrupt exit terminated

scheduler dispatch

IO or event completion I/O or event wait

Process Control Block | PCB

RFPEANBRPNSHIEIES—PCB (FERFRANZREHEHFE—  HENSER)

e In the kernel, each process is associated with a process control block

o process number (pid)

o process state

o program counter (PC)

o CPU registers

o CPU scheduling_information

o memory-management data

o accounting_data
o I/0 status

e Linux’s PCB is defined in struct task_struct: http://1xr.linux.no/linux+v3.2.35/in

clude/1linux/sched.h#L1221
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process state
process number
program counter

registers

memory limits
list of open files

Process Scheduling

e CPU scheduler(CPU i £ 88 ) selects which process should be executed next and
allocates CPU

o invoked very frequently, usually in milliseconds: it must be fast

e To maximize CPU utilization, kernel quickly switches processes onto CPU for time

sharing
e Process scheduler selects among available processes for next execution on CPU

e Kernel maintains scheduling queues of processes (AT EIFMERE, ERZFiIEEqueve, RBE
BREEfEquevediE(queveBEIHTFRF, BERAHMERLHMALAT))
o job queue: set of all processes in the system

o ready queue: set of all processes residing in main memory, ready and waiting
to execute

o device queues: set of processes waiting for an I/0 device

e Processes migrate among the various queues

Scheduler

e Scheduler needs to balance the needs of GHEESATERAZE):

o I/0-bound process | KEBHSATEIEMI/0iEK
= spends more time doing I/0 than computations

= many short CPU bursts

o CPU-bound process | XEBoBEIEIEMCPUITE

= spends more time doing computations
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= few very long CPU bursts

Context Switch

e Context switch | ET3JJ#e: the kernel switches to another process for execution

e save the state of the old process

e Tload the saved state for the new process

RIFIBHAZAIRT, DNEETHAZAPIRS

e Context-switch is overhead; CPU does no useful work while switching

o the more complex the 0S and the PCB, longer the context switch

e Context-switch time depends on hardware support

o some hardware provides multiple sets of registers per CPU: multiple contexts
loaded at once

Process Creation

B forkRETEMALE

e Parent process creates children processes, which, in turn create other processes,

forming a_tree of processes

o process identified and managed via a process identifier (pid)

e Design choices:
o three possible levels of resource sharing: all, subset, none

o parent and children’s address spaces

= child duplicates parent address space (e.g., Linux)

= child has a new program loaded into it (e.g., Windows)
o execution of parent and children

= parent and children execute concurrently

= parent waits until children terminate
e UNIX/Linux system calls for process creation

o fork creates a new process

o exec overwrites the process’ address space with a new program

o wait waits for the child(ren) to terminate
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parent O et )_resumes

.

L
/
b

b

Zombie vs Orphan

e When child process terminates, it is still in the process table until the parent

process calls wait() | BURFwait

o zombie | {f€F: child has terminated execution, but parent did not invoke wait()

(FHEHBHITER, QAR FEERARwait)

v XEFFHERER R RASRRE

» REFHKITUSLHET T
» BEEFHETAMLHE, WME init HEEE. B
» kill HEFHETY, BEHERER T

o orphan | #MJL: parent terminated without invoking wait. Systemd will take over.

Systemd will call wait() periodically
FHESHE init #HIE (pid 1) EE
= f5lg0 systemd =BT wait REREN) LIRS

Process Termination

e Process executes last statement and asks the kernel to delete it (exit)

o 0S delivers the return value from child to parent (via wait)

o process’ resources are deallocated by operating system

e Parent may terminate execution of children processes (abort), for example:
o child has exceeded allocated resources
o task assigned to child is no longer required

o if parent is exiting, some 0S does not allow child to continue

= all children (the sub-tree) will be terminated - cascading termination
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Interprocess Communication *%*

e Processes within a system may be independent or cooperating

o independent process: process that cannot affect or be affected by the execution

of another process
o cooperating process : processes that can affect or be affected by other
processes, including sharing data

= preasons for cooperating processes: information sharing, computation
speedup, modularity, convenience, Security

o Cooperating_processes need interprocess communication (IPC) | HMERATREITIPCER

e Two models of IPC

o Shared memory

o Message passing

Remote Procedure Call | RPC *

e Remote procedure call (RPC) abstracts function calls between processes across

networks (or even local processes)

e Stub:a proxy for the actual procedure on the remote machine
o client-side stub locates the server and marshalls the parameters

o server-side stub receives this message, unpacks the marshalled parameters, and
performs the procedure on the server

o return values are marshalled and sent to the client

Thread

Motivation

e Why threads?

o multiple tasks of an application can be implemented by threads | IBREIFSZSAE
ENMHMEFRRSELE, EHEFHERXRHEBARLZHE, BTLUSTRESTRERE, TH=E
RN AHA

= e.g., update display, fetch data, spell checking, answer a network request
o process creation is heavy-weight while thread creation is light-weight - why?

o threads can simplify code, increase efficiency

e Kernels are generally multithreaded
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What is Thread

e A thread is an independent stream of instructions that can be scheduled to run as

such by the kernel

e Process contains many states and resources

o code, heap, data, file handlers (including socket), IPC
o process ID, process group ID, user ID
o stack, registers, and program counter (PC)

e Threads exist within the process, and shares its resources

o each thread has its own essential resources (per-thread resources): stack,
registers, program counter, thread-specific data...

o access to shared resources need to be synchronized
e Threads are individually scheduled by the kernel

o each thread has its own independent flow of control

o each thread can be in any of the scheduling states

BNEEEABAE/Ipre-thread resources, {BEIERZIREE

Thread and Process

Single-Threaded imlmhr::':;i
Process Model rocess Jlode

Thread Thread Thread
Pooooos i B plelinlnlalnle 1 Fo=-= === 1
: Thread : : Thread : : Thread :
: Control : : Contral : : Contral :
: Block : : Block : : Block :
] 1 ] 1 1 1
i o o i
] 1 ] I 1 I

Process 1| User U 1| User b1l User |

Contral : Stack : : Stack : : Stack :

Block i 1o 1o I
1 1 1 I I I
(] 1 (] I I I
i | b I

User ' Kernel o Kernel Lo Kernel :

Address i Stack |1 Stack | Stack |

Space || | b I
| ———— N T U T —— !

Implementing Threads

e Thread may be provided either at the user level, or by the kernel

o user threads are supported above the kernel and managed without kernel support

= three thread libraries: P0SIX Pthreads, Win32 threads, and Java threads
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o kernel threads are supported and managed directly by the kernel

= all contemporary 0S supports kernel threads

Thread Benefits

e Responsiveness

o multithreading an interactive application allows a program to continue running
even part of it is blocked or performing a lengthy operation

e Resource sharing

o sharing resources may result in efficient communication and high degree of
cooperation. Threads share the resources and memory of the process by default.

e Economy
o thread is more lightweight than processes: create and context switch
e Scalability

o better utilization of multiprocessor architectures: running in parallel

Multithreading Models

e A relationship must exist between user threads and kernel threads

o Kernel threads are the real threads in the system, so for a user thread to
make progress the user program has to have its scheduler take a user thread
and then run it on a kernel thread.

o BIE:
Many-to-0ne Model
One-to-One Model | &EIH

[e]

[e]

o Many-to-Many Model
Two-Level Model

[}

Threading Issues

e Semantics of fork and exec system calls | forkflexecHJiE X (forkzZSduplicateffLLix
8. execHTIHR—ERD)

e Signal handling

e Thread cancellation of target thread
e Thread-specific data

e Scheduler activations
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CPU Schedule

iR CRERNS/NESBTREIDRE, (BEETLIE

Some Terms

e Kernel threads - not processes - are being scheduled by the 0S
e However, “thread scheduling” and “process scheduling” are used interchangeably.

e We use “process scheduling” when discussing general ideas and “thread scheduling”
to refer thread-specific concepts

e Also “run on a CPU” — run on a CPU’s core

Basic Concepts

e Process execution consists of a cycle of CPU execution and I/0 wait

o CPU burst: AEBORIEMEM CPU =8
» REHE. FRITENA CPU burst KEZEFIEX
o I/0 burst : XEBHAIEFEM I/0
» HIEAERDESZ I/0 burst
o CPU burst distribution varies greatly from process to process, and from
computer to computer, but follows similar curves
e Maximum CPU utilization obtained with multiprogramming

o HFIHETE I/0 burst WSBEERS—MNHEHITHIT | CPU scheduler selects another
process when current one is in I/0 burst

CPU Scheduler

* CPU Scheduler RERFRGARPATZAEREM, TIESNEMN ready queve HIZE—NHIEFREG
CPU BRIEDE4E | CPU scheduler selects from among the processes in ready queue,

and allocates the CPU to one of them

e CPU scheduling decisions (may take place) when a process:

. switches from Cr‘unning to waiting state) (e.g., wait for I/0)

. switches from (waiting to Peady) (e.g., at completion of I/0)

e Scheduling under condition 1 and 4 only is (EIH@E.EEE’\J)

o FAIEELHNBENBERT, —BE—MEFHESE S CPU FiR, Ma—BHhT, BIERFZESS 1/0
| once the CPU has been allocated to a process, the process keeps it until
terminates or waiting for I/0

1
2. switches from (r‘unning to ready state) (e.g., when an interrupt occurs)
3
4
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o also called cooperative scheduling (WME=NEE)
e Preemptive scheduling schedules process also in condition 2 and 3

o EEMHIER, BIUNitAIES | preemptive scheduling needs hardware support such as a
timer

o EE—ERELHITIE (synchronization primitives) | synchronization primitives are
necessary

When

e The scheduling happens when the CPU is in kernel model, either because of hardware
interrupt of software interrupt (e.g.,system call)

trap/syscall  User Mode | —
Program
interrupt —» |nt/Execption/Syscall
™ Handler in the 0S Kernel Mode
— -
Peripheral CPU Hardware
Device exception

Preemption | 18

e Preemption: involuntarily suspending a running process is called preemption

o (ﬁooperative multitasking o{): a process runs until it voluntarily stops or waits
for IO

IMEECINAEE S

. (ﬁreemptive multitasking oé): scheduler running in the kernel space to switch
between processes

User Preemption | FARSISH

e User preemption

o When returning_to user-space from a system call

o When returning to user-space from an interrupt handler

FFRZRERIER T, BRSEARAILIES?
Vv, EARZESMARSESNARRAZKIDRENRBRAR, BMEEIFRZE SrIER MR LM
SR E R B SAIRHR SRR
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Kernel Preemption

o MRAPSERTIHT T RRER, WRERZSHITHRE, MRIETRET i, ERFIER:
o QREREHAIREIZET THRINER, PESTRRRER

o IWRIFIFRAMZIAEES (kernel nonpreemption)

o BRMASKERPTIES

» AIREEREIAFSITARLERS, RIS —NHE

o WEREREREZEER, SR T N ESRROHER THIT

o IHRIFIFRAMZIEE (kernel preemption)
e When an interrupt handler exits, before returning to kernel-space
e When kernel code becomes preemptible again

e If a task in the kernel explicitly calls schedule()

e If a task in the kernel blocks (which results in a call to schedule() )

Process A Process B Process A

User Space
Kemel entry

- | - LI - -— - - - ] | - | L] - -
via system call

Kernel Space

Process A Process A
Preempted Continues

— Time

e Preemption also affects the 0S kernel design

o kernel states will be inconsistent if preempted when updating shared data

o i.e., kernel is serving a system call when an interrupt happens
e Two solutions:
o waiting either the system call to complete or I/0 block
= kernel is nonpreemptive (still a preemptive scheduling for processes!)

o disable kernel preemption when updating shared data

= recent Linux kernel takes this approach:
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= Linux supports SMP
= shared data are protected by kernel synchronization
= disable kernel preemption when in kernel synchronization

= turned a non-preemptive SMP kernel into a preemptive kernel

Dispatcher

Dispatcher EEFFRFALTASTHIZTHEATERM
o IR ETX

o {REIAFE

o BYEBIEMAIMERSHIT

Dispatch latency: dispatcher H{TUIRRTAIEZHIRTE (WNEE—NHERIRES —NHE)

Dispatcher module gives control of the CPU to the process selected by the short-

term scheduler

o switching context

o switching to user mode

o jumping to the proper location in the user program to restart that program
Dispatch Tlatency: the time it takes for the dispatcher to stop one process and

start another running

Scheduling Criteria | FEIEHN

(ﬁPU utilizatioﬁ): percentage of CPU being busy

Throughput ): # of processes that complete execution per time unit

CTurnaround time): the time to execute a particular process

o from the time of submission to the time of completion

Waiting time): the total time spent waiting in the ready queue
: the time it takes from when a request was submitted until the

first response is produced

o the time it takes to start responding

A E AR TR R RS TSAIEER

CPU FIAAZ (utilization) : CPU HFERFIAR, HAHIT

#E (throughput) @ BfATEINFERAITIER, WEHeF

[E%ERIIE (turnaround time) : MRR—MEWEISERIZIFIL TR ZEAIAIE
Ff5AJIE) (waiting time) : 7£ ready queue HREFHYCATIA

NARASE (response time) : MAFRRIEKESEISE—IRIE AT Z2AIATIE]

BPEREEMUNFEESH CPU FIAEX, AE, BEREAEKIAE. S, mmazadE.
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o KEDEREMUTIIE
o —HERTEEMRUR) / &XE

o PIUNSERIRLE, WIRERIEE—EREIRZTH
o XNTRERSE, HEMMNAIERIZCRAREN

Scheduling Algorithm
Criteria

Optimization

e Generally, maximize CPU vutilization and throughput,

waiting time, and response time
e Different systems optimize different values

o in most cases, optimize average value

and minimize turnaround time,

o under some circumstances, optimizes minimum or maximum value

= e.g., real-time systems

o for interactive systems, minimize variance in the response time

First-come, first-served
(FCFS)

e FCFS (First Come First Served) : fcR&IRS
o B—HaHeANAE
o waiting time BPEGFRBEEFANNRESRERLACESSEL

o burst timeiSHIEANEITHIE

SHEE, %%;Cwaiting time)%l](aver‘age waiting time)

e Example processes:

Process

e Suppose that the processes arrive in the order:Pq,

scheduling

Burst Time

P2, P3

24

3

3
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e the Gantt Chart for the FCFS schedule is:

P, P2 Ps

0 24 27 30

e Waiting_time for Py = 0; P, = 24; Pz = 27, average waiting_time: (0 + 24 + 27)/3 =
17

FCFS Scheduling | IESHEE
e Suppose that the processes arrive in the order: Py, Pz, P;

o the for the FCFS schedule is:

P, P, P,

0 3 6 30
e Waiting time for Py = 6; P, = 0; Pz = 3, average waiting time: (6 + 0 + 3)/3 = 3

e Convoy effect: all other processes waiting until the running CPU-bound process is
done

o considering one CPU-bound process and many I/0-bound processes

Shortest-Job-First Scheduling

R —FEEEE
SJF (Shortest Job First) : BRI
e T CPU burst ERIGHIHTEMRIHT
o EANEBPNEMN (BISFHNEREN) BESE
o SJIF ATLAZEIEAIRY, BALARIHE AR
o WBARM SIF X#F shortest-remaining-time-first FEEEL
o RIS CPU burst HKEE
o {RigAIAHSE CPU burst fEX
o J@iT exponential averaging SEFG
o Tpi1 = at, + (1 — a)r,, B
" Tp+1: FGUAIT—A CPU burst KE
= Tp: % n XFUARY CPU burst
= tp: % n REEEAI CPU burst
» o FHERF, RAOEMUAINE
o WEHIHEGAMER), FAIFTN SAMERK


af://n1309
af://n1325

e Associate with each process: the length of its next CPU burst

o the process with the <§ma11est next CPU burst) is scheduled to run next

e SJF is provably optimal : it gives minimum average waiting_time for a given

set of processes
o moving a short process before a long one decreases the overall waiting
time

o the difficulty is to know the length of the next CPU request

= long-term scheduler can use the user-provided processing time estimate

= short-term scheduler needs to approximate SFJ scheduling

e SJF can be preemptive or nonpreemptive

o preemptive version is called shortest-remaining-time-first

Example of SJF

Process Burst Time
Py 6
Py 8
P3 7
P4 3

e SJF scheduling chart

Py P, Ps Pz

0 3 9 16 24

e Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Shortest-Remaining-Time-First

e SJF can be preemptive: reschedule when a process arrives

Process Arrival Time Burst Time
Pq 0 8
P2 1 4
Pz 2 9
P4 3 5

e Preemptive SJF Gantt Chart
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BRE

P P, P, P:

0 1 5 10 17 26
e Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)1/4 = 26/4 = 6.5 msec

Priority Scheduling

MAREERE (priority scheduling) : HRIBMERFRE
o AB—HEHE—MA%ER
o EEUTRAVHIRM T
o SJF
RSB R
o BPSFRNT—A CPU burst REAIHRENLRES
o FEFFTLIRIe AR AR GUHY
o MEERBEEENELETRSSHIE" (starvation)
o BMERIASCRAVHIEDREKIZASIRIT
o RRFRRESIN aging, EEMEMIK, HERRRS

e Priority scheduling selects the ready process with highest priority

o a priority number is associated with each process, smaller integer, higher

priority
o the CPU is allocated to the process with the highest priority

o SJF is special case of priority scheduling
= priority is the inverse of predicted next CPU burst time

e Priority scheduling can be preemptive or nonpreemptive, similar to SJF

e Starvation is a problem: low priority processes may never execute

o Solution: aging_— gradually increase priority of processes that wait for a
long_time

Example of Priority Scheduling
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ProcessA Burst Time Priority

P1 10 3
P, 1 1
P3 2 4
P4 1 5
Ps 5 2

e Priority scheduling Gantt Chart

P, | P. P, P, [P,

0 1 6 16 18 19

e Average waiting time = 8.2 msec

We use small number to denote high priority.

Round Robin (RR) | EIEKELEE

Round Robin (RR) : EJjEIR#C4E

o B—MNATEEBE—RIER (time quantum) q

ERT A A R EE MRS T — e
o tEiEi, BNHEHSEINT q ATE
BEA g BANEFIEIELE
o q KK, BHETENEI FCFS
o q A/, MTTFIRE, ETSHEAFEHEE K
o BER 10-100 ms

—ERROIHIEE

e Round-robin scheduling selects process in a round-robin fashion

o each process gets a small unit of CPU time (time quantum, q)

= g is too large — FIFO0, q is too small — context switch overhead is high

= 3 time quantum is generally 10 to 100 milliseconds
o process used its quantum is preempted and put to tail of the ready queue
= a timer interrupts every quantum to schedule next process
e Each process gets 1/n of the CPU time if there are n processes

o no process waits more than (n-1)q time units

o Example: 5 processes with 20 ms time unites, then every process cannot et more
than 20ms per 100ms
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Example of Round-Robin

Process Burst Time
P, 24
P, 3
Ps 3
P, P;ends

P, P, Pyl Pl Py P | P | P, Quantum=4

0 4 7 10 14 18 22 26 30

B Typically, average waiting time worse than SJF, but better response
time
® No starvation, so better response time
® And the wait time is bounded!
» Know how long a process needs to wait
» Average waiting time
P1=6. P2=4 P3=7

Multilevel Queue

Multilevel Queue Scheduling **

Multi-level Queue Scheduling: ZZFIEEEX

» ready queue OBLZ AT

o LKangy A B MEBAF IR AL ERBAT
o —NHERWIKAMSEI—BATIH
o BANFIRILIEECHBESE

o BN, BREMAIHFEFITILIER RR &%, RRXERIHAIEAGISILAER FCFS &%
o BAFIZEth TR TEE

o HLAREEMARHIEE, EERLSHINE

o BILAEIRIIA R IEESRIEE
ECFRR AT, HZBEHSATENE, 8ME—1BCH ready queve, BEBMATIRBEECHYNEE
Hix. G, sUERAFIER RR EELURIE response, FEMFITILAER FCFS, EAY, MAFIZEHNEEE
E. BHEA preemptive priority scheduling, BDHE(RHESMITRAIAGI (AIBIESRAF) H=RT, FIL
FRHIBATI (ANEERAT) AR REREET. WRTLAMERASIER time-slicing, FN—BAFIEEFE 80%
HIEE RS —MER 20%. fFan:
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highest priority

) interactive processes -
 E— —

batch processes

lowest priority

Multilevel Feedback Queue

Multi-level Feedback Queue Scheduling: ZRKRIFNFIEAREEL
o MZRNFTIEENXBIE— MR LIEARAIAG I Z B TR
o SRHENFHZAIMER
o RPERREMATEERAIERY
* aging tERJLABIIXFS RLH
o BMERLTEM. I/0 intensive AHHIEESAIEREM:R
- ERBERNREERE

Multilevel Feedback Queue Scheduling FRIFHRAERIIZENTR, XFHEETLUAGRSHFII, EARATI
EE. S AFIFREERE. MIIZENEEEAURSHERREIE SRR/ BREIER S RAIBATIAIE
HEEAEN. —MRAFHEREEER— N ERTFA—ERT. XMELHERASHN,

BXEMIF: B=MBAF 0, 1, 2, ERBORFEE. ZiHE ready BIHGRINZI Q0 &, Q0 WESKA RR
Scheduling, MG/ MNMEEERE 8ms MIRTEEREIZTT, MESESANMITHIHAN Q1; REH Q0 A=H
Q1 AATEEHIEST. Q1 AEBBAERA RR Scheduling, BMNHEE loms REAREIETT, MERBETTRUET
WIFEHAN Q2; REZH Q1 tRATH Q2 AulaetiiziT. Q2 WIERRA FCFS &%,
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. ™ .
S quantum = 8 QO0: RR (q=8) high
T 2] . - dcross-queue
> quantum = 16 Q1' RR (CI 16) priority
T _
> FCFS R Q2: FCFS low

JINMAESR, ©8average waiting time

Thread Scheduling **

e 0S kernel schedules kernel threads

o system-contention scope (SCS): competition among all threads in system

o kernel does not aware user threads

e Thread library schedules user threads onto LWPs
o used in many-to-one and many-to-many threading model

o process-contention scope (PCS): scheduling competition within the process

o PCS usually is based on priority set by the user

o user thread scheduled to a LWP do not necessarily running on a CPU

= 0S kernel needs to schedule the kernel thread for LWP to a CPU

Pthread Scheduling

e API allows specifying either PCS or SCS during thread creation

o pthread_attr_set/getscope is the API

= PTHREAD_SCOPE_PROCESS: schedules threads using PCS scheduling : number of
LWP is maintained by thread library

= PTHREAD_SCOPE_SYSTEM: schedules threads using SCS scheduling
e Which scope is available can be limited by 0S

o e.g., Linux and Mac 0S X only allow PTHREAD_SCOPE_SYSTEM

Multiple-Processor Scheduling

o MFSAIERRAELT
o asymmetric multiprocessing

» RE—MMESARRREE, 42 I/0, LUREMRYE)
» HEAMERREATUTERIT
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o symmetric multiprocessing (SMP)

= BMESEEEME CHEE
» FRBZ&IEREEERERI— ready queuve A (FFE core HE) , BEAEEARRE core BEEHCEH

ready queue
» B ERZBREEXMAR
o TEHZFE chip multitreading (CMT) R
o £ CPU core HE{TRMEHEIE

PMEMEIZHSE CPU RORYTER T, (BRBBECHLETX

o

o {&k& memory stall 3EsCIl

= 15 memory REIEHI

» E—RAEARNIE memory AUBRHMERILUEES —MEMLIEHNIT
BMMERRANZEE CPU 21 = SMESPIOE + B MROFEHEREN
PRV

» RFRFRRPMRELAEEREE CPU biEfT

= CPU REIAEAIE core LIE{THEMHLEIE

= GNERER MTEEEENEERER— core L (IX#F memory stall AIHEZRZIREIN)

« Load Balancing fa#i9

o

[e]

o SMP IBIETLATE CPU HITAEEINTLY
o WFIIIE
» push migration: FHAMHGERTEIER FRGRHEER, KMTHEONEES push X
= pull migration: ZRAVCIEESERIMNEITAIRIRES ERISRITS
e Processor Affinity QMESSEZME
o H—PEEE— CPU LT —RAJEZ/E, cache ABERWHRILIZET

o WMEATAHIIEMIFXMEIE nigrate ZIHEWERRE, 2E cache miss SEERETE

o PRI
» soft affinity: BFRFRARERFLIEER— MR LIET, EARIE (FIANRHSEHERY
)

= hard affinity: SBEFIE—MHAERBEEIRLELRES HialT
o NUMA ZBHIZRS

o NUMA T84 CPU BECYMNAY memory, AJLURESE, BAILUGEEE CPU B memory RIiEE
®ig

o NUMA-aware RUR(ERHSERERRHRIEIAEATESRIEE CPU A9 memory (8]
o IHHRMERARE
o soft real-time systems #RSLCHY: IGRAISLEHESIRESMSR, EHNRIENEEE
= g0 Linux FEERSERHRIERS
» Linux FIRAFIESCRS: EORESCR] —EErerEiissIdFBS a4 (Hlan-lr)
o hard real-time systems MELAY: MEESVRAEEMN ddl ZEIEHRHIT, WRERT, RE
watchdog BMMERRIIRFABRE, SBFRF reboot FRERIELRTIE
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1. Load Balancing

AT ERTACPURARISET, Blbk— busy—{empty

« If SMP, need to keep all CPUs loaded for efficiency
- Load balancing attempts to keep workload evenly distributed

Push migration — periodic task checks load on each processor,
and if found pushes task from overloaded CPU to other CPUs

Pull migration - idle processors pulls waiting task from busy
processor

2. Processor Affinity

- When a thread has been running on one processor, the cache contents
of that processor stores the memory accesses by that thread.

- We refer to this as a thread having affinity for a processor (i.e.
“processor affinity”)

- Load balancing may affect processor affinity as a thread may be moved
from one processor to another to balance loads, yet that thread loses the
contents of what it had in the cache of the processor it was moved off of.

- Soft affinity — the operating system attempts to keep a thread running
on the same processor, but no guarantees.

- Hard affinity — allows a process to specify a set of processors it may run
on

NUMA and CPU Scheduling

e If the operating system is NUMA-aware, it will assign

e memory closes to the CPU the thread is running on.

Real-Time CPU Scheduling

e Can present obvious challenges

o Soft real-time systems - Critical real-time tasks have the highest priority,
but no guarantee as to when tasks will be scheduled

o Hard real-time systems - task must be serviced by its deadline
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Synchronization

o HIEERITHIRHMRRT RESIRBERTF TR
o FARIFNEZNRFETESSHEUEA—HME (data inconsistency) 4
o Lbin, HEFBIETHENEE, PNHENSBEE counter HTEIR + 1:

1 static volatile int counter = 0;

2 ' void *mythread(void *arg) {

3 printf("%s: begin\n", (charx)arg);
4 int i;

5 for (1 = 0; i < 1e7; i+) {

6 counter = counter + 1;

7 }

8 printf("%s: done\n", (char%)arg);
9 return NULL;

10 '}

REERNMELZERAE, counter BER/NVF 2e7, [RE:
o counter = counter + 1 7f C ESEBEE—&KEG
o BRTELREEHIZE

JRFERME
. B=FRIEDNRHIX—EE:

1 'mov eax, <addr of counter>
2 add eax, 1
3 mov <addr of counter> eax

= SRIEHT E M— B

o MR—NEAEESZRISHTHARRIITR—1MEAET, SF-EN Nam:

1 Thread 1 0S Thread 2

2 ____________________________________
3 read (eax=50)

4 +1 (eax=51)

) -

6 read (eax=50)
7 +1 (eax=51)
8 write (51)

9 «—

10 | write (51)

= FNEIEEREE)T 50, REEHMNT—, &EHSET 51
» ERMNEEERPIT TR, (B&RfE counter RYERNT 1
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Race Condition

o INHEHAEMIGE., BRE—IHEEETE, HERBRTHANINE, XMERRAKHERESR (race
condition)
o WM EHMBE—NEEEFHGF

s APt RERGRS
o IAIFIANHIZERE fork FHHE, BRIAGHZE
o HIZESHANZEFEZEE next_available_pid 4P
o WIZFARLIEFR fork EKE, FIRERSHM N HIEEIIERNHES

Critical Section

e Consider system of n processes {pg, P1, ***, Pn-1r

e Each process has a critical section segment of code
o e.g., to change common variables, update table, write file, etc.
o E—81Z, RE—NHEILLE critical section

o TEHAN critical section(LATEFRA“CS") ZAIREBRHIAN CS HNIR, XFEHABIRA
entry section

o 1B CS EBMAUR, XEBoEFRA exit section
o FITHEIZBHFRA remainder section

e General structure of process p;j is

do {
'mtry section

critical section

exit section |

remainder section

} while (true);

Critical SectionARdata, MEIHIRREN—ERREAE—HXIE
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Solution to Critical-Section: Three
Requirements

e Mutual Exclusion | B, ME
o (FEMARE—NHERE CS &
e Progress

o MELBEHERE CS BEHEFTHN CS, BPARBAKE remainder section PHITRIHFERISNNE
¥, LIAEERE T —MHAN CS, BEXMIEEARELIRAEIR | if no process is executing in
its critical section and some processes wish to enter their critical section,
then only those processes that are not executing in their retainer sections
can participate in deciding which will enter its critical section next, and
this selection cannot be postponed indefinitely

e Bounded waiting

o M—EHEBMEHAN CS BUIEK, BEZBEKRAITALE, HittHERITHAR CS FREE LR |
There exists a bound, or 1limit, on the number of times that other processes
are allowed to enter their critical sections after a process has made a
request to enter its critical section and before that request is granted

o BHLETHE | it prevents starvation

BFEEARRMNA

Peterson’s Solution

e Peterson BiEMBATHNHENRELAE | Peterson’s solution solves two-processes
synchronization
o HfRZ load 1 store EEFM (atomic) B
o JRFMBIRAINE, IRABERITHT
s AMNHREHERITE:
o int turn : fRICHFIEE CS PAIHIE
o bool flag[2] : tFCHHEEEEHEAN CS

e Process 0:

1 'do {

2 flag[0] = true;

3] turn = 1;

4 while (flag[1] && turn = 1);
5 // critical section

6 flag[0] = false;

7 // remainder section

8 '} while (true);

e Process 1:
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1 'do {

2 flag[1] = true;

3 turn = 0;

4 while (flag[@] && turn = 0);
5 // critical section

6 flag[1] = false;

7 // remainder section

8 '} while (true);

o A REEELFHUT FABERIEER T

MINRERBETSEHR

Hardware Instructions

e Special hardware instructions that allow us to either test-and-modify the content

of a word, or two swap the contents of two words atomically (uninterruptibly.)

o Test-and-Set instruction

1 bool test_set(bool *target) {
2 bool rv = xtarget;

i3] *target = true;

4 return rv;

5 [}

s BYRE—NETIERE
= TSI Peterson EiX

do {
while (test_set(&lock)); // busy wait
/* critical section x/
lock = false;
/* remainder section %/
} while (true);

o~ Ol N NN P

= XMEEEAANHE Bounded Waiting, FLEAMRIE waiting M—EHHYT (BUATHEE)
» %2 Bounded Waiting HUfR%:
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1 /do {

2 waiting[i] = true;

3 while (waiting[i] && test_set(&lock));
4 waiting[i] = false;

5 /* critical section x/

6 j=0G+1) &n;

7 while ((j = i) 8&& !waiting[j])
8 j=0G+1) %n;

9 if (j = i) lock = false;

10 else waiting[j] = false;

11 /* remainder section %/

12 |} while (true);

o Compare-and-Swap instruction

= BN

1 bool compare_and_swap(int *ptr, int expected, int new_value) {
2 int rv = *ptr;

3 if (rv = expected) {

4 *ptr = new_value;

5 F

6 return rv;

7 |}

» BRE—NRFERE
= returns the original calue of passed parameter value

= setthe variable value of the passed parameter new_value but only if
*value = expected is true. That is, the swap takes place only under
this condition

= {#F compare-and-swap }ESRIFRE

1 do {

2 while (compare_and_swap(&lock, 0, 1) == 0);
3 /* critical section %/

4 lock = 0;

5 /* remainder section %/

6 '} while (true);

AIMEERESEK, F<atonical (—REATPUTEARAIIT, BIRFUTABERITHT)

o FFEE
o BT FER, FaEIXMERMEIEERNRT ISR
o {40 increment(&sequence) REFMIEIN sequence BIE

o {#F3 compare-and-swap BYSCHL:



void increment(int *sequence) {
int temp;
do {
temp = *sequence;
} while (compare_and_swap(sequence, temp, temp + 1) == temp);

o~ Ol N NN B

Mutex Locks | B

Previous solutions are complicated and generally inaccessible to application

programmers

0S RitEBYRGETERBERE CS B, HEEMNHmEERB (nutex lock) | 0S designers build

software tools to solve critical section problem. Simplest is mutex lock

Bidse acquire() g, ABHIT CS, B release() FiE(F4P CS | Protect a critical section

by first acquire() a lock then release() the lock

o Boolean variable indicating if lock is available or not

acquire() #1 release() MAMEEREFH | Calls to acquire() and release() must be
atomic

o EEITEMHETFIESEKEI | Usually implemented via hardware atomic instructions
such as compare-and-swap.

But this solution requires busy waiting

This lock therefore called a spin lock(BHEsH)

while (trus) {
acquire lock

critical section
release lock

remainder section

void acquire() {
while (!available); // busy wait
available = false;

}

void release() {
available = true;

B RF (busy waiting) RSCHR

ERICFHEINNE (CPU 2—BEHRITHRH while 183K) BMREZEIE
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o BY yield E#FF CPU KR THBLRE

1 void lock() {

2 while (test_set(&flag, 1) = 1)
3 yield();

4 '}

5 void unlock() {

6 flag = 0;

7 |}

o (BRSNS KIS

Semaphore | {ES&

e Semaphore S is an integer variable

o e.g., to represent how many units of a particular resource is available

o ROTLLEIE wait #0 signal REFHEHXESEME | It can only be updated with two

atomic operations: wait and signal

o spin lock can be used to guarantee atomicity of wait and signal

o originally called P and V (Dutch)

[e]

wait #F (P) SRKESENEN—

signal #F (V) FESENEN—

[e]

o a simple implementation with busy wait can be:

wait(s) signal(s)
{ {
while (s == @) ; //busy wait S++;
s—; ¥

e Binary semaphore | HHYT i : EEE0EREESH 0 8¢ 1 | integer value can be only 0

or 1

o also known as mutex lock to provide mutual exclusion(FBFCHIEFSH)

1 Semaphore mutex = 1;

2 do {

3 wait(mutex);

4 // critical section
5 signal(mutex);

6 // remainder section
7 '} while (true);

8
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e Counting semaphore: ESEMETLUAFEEIERES, E&KIHFIJE | allowing arbitrary

resource count
e Waiting Queue
o BMEEEXE— waiting queue
o wait RBVZENRERNJEFMIAN waiting queuve
o signal HUBMRIGEE—NE waiting RUHHEE

o AEENZE

1 void wait(Semaphore *S) {

2 S—value-—-;

3 if (S—value < 0) {

4 add process to S—list;
5 block();

6 F

7 |}

8 void signal(Semaphore *S) {

9 S—value++;

10 if (S—value < 0) {

11 remove a process P from S—list;
12 wakeup(P);

13 F

14 |}

Deadlock and Starvation

o ZEfli (Deadlock) RIEMNES MNHEEHESSUARBIER, SEAEHEE I EMEHITIBR
o YlI# (Starvation) RiE—MHERTIRNELEREZRMITEREIITRIER
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« Deadlock: two or more processes are waiting indefinitely for an event that can
be caused by only one of the waiting processes

let S and Q be two semaphores initialized to 1

PO P1
wait (S); wait (Q);
wait (Q); wait (S);
signal (S); signal (Q);
signal (Q); signal (S);

+ Starvation: indefinite blocking
+ a process may never be removed from the semaphore’s waiting queue

« does starvation indicate deadlock?

Priority Inversion

o i%ERREE (Priority Inversion) BEE—1MSMERIEERTEFS—MEMSRAHENSHE ST
SRR, NMSEEAHETT LR ERIFMAEREHTAIER
o flgn:
o =NHE ABC, iRk A<B<C
o HE A FAM, C AFHXIEH
o B #iE ready MEBTHIT A
o MREREET B 1 C AIMER
o MRRFE: SR EE (Priority Inheritance)
o IREIEVSFFEHIAIHE A RUMSSRIRENIEESHRY C AUSER
e Priority Inversion: a higher priority process is indirectly preempted by a lower
priority task
o e.g., three processes, P, Py, and Py with priority P < Py < Py
o P_ holds a lock that was requested by Py=Py is blocked
o Py becomes ready and preempted the P

o It effectively "inverts" the relative priorities of Py and Py

e Solution: priority inheritance

o temporary assign the highest priority of waiting process (Py) to the process
holding the lock (P)
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