ISA
How to Improve the CPU
ISA Classification Basis
ISA Classes
Stack Architecture
Accumulator Architecture
GPR Arthitecture
GPR: Register-Memory Arch
GPR: Load-Store Architecture
Practice
Stack
Accumulator
Memory-Memory
Register-Memory
Load-Store
RISC-V ISA
Formats of Instruction
RISC-V Address Mode
Register Operands
Memory Operands
Register vs. Memory
The Four ISA Design Principles
Pipelining
Different modes of execution
What is pipelining?
Characteristics of pipelining
Classes of pipelining
Pipeline Performance
Throughput(TP) | HItE
Speedup(Sp) | fNEtk
Efficiency(n) | X
Example
Ideal Performance for Pipelining
RISC-V Pipelining
Pipelining and ISA Design
An Implementation of Pipelining
How Pipelining Improves Performance
The Pipelined Version of the Datapath
Pipeline Hazards
Structural Hazard | EHEER
Data Hazards | #UEER
Control Hazards | &HIEK
Code Scheduling

Data Hazards for Branches

Dynamic Branch Prediction
1-Bit Predictor: Shortcoming
2-Bit Predictor
Instruction-Level Parallelism(ILP)
Multiple Issus
Two types of multiple-issue processor
Comparison
Scheduling
Static Multiple Issue

Dynamic Multiple Issue

ISA

How to Improve the CPU

e Reduce the number of instructions
o Make instructions that do more(CSIC)
o Use better compiler
e Use less cycles to perform the instruction

o Simpler instructions(RISC)

o Use multiple units/ALUs/cores in parallel
e Increase the clock frequency

o Find a newer technology to manufacture
o Redesign time critical components

o Adopt multi-cycle

ISA Classification Basis

ISA Classes

o IZARCPUREBHITFESZE, ISARTLID A=
1. EFH (#&45%3 | Stack architecture)
2. ETEMSE (EmMsEEEM | Accumulator architecture)
3. ETE7788 (BFHE7FE8 | General-purpose register architecture | GPR)

af://n3
af://n4
af://n29
af://n30

Stack Architecture

e Implicit Operands—On the Top of the Stack(T0S)
e First operand removed from second op replaced by the result

e C = A + B(memory locations)

o Push A
o Push B
o Add
o Pop C
(a) Stack (a) Stack (a) Stack
Prnceslsor Proces!sm Prooeslsor >
TOS —

(a) Stack (a) Stack

Processor

I

af://n41

Accumulator Architecture

e One implicit operand: the accumulator

one explicit operand: mem location
e Accumulator is both an implicit input operand and a result
e C=A+B

Load A

Add B

Store C

(b) Accumulator (b) Accumulator (b) Accumulator

(b) Accumulator

af://n60

GPR Arthitecture

e Only explicit operands

o registers

o memory locations
e (Operand access:

o direct memory access

o loaded into temporary storage first

e Two Classes:

o Register-memory architecture
‘ any instruction can access memory
o Load-store architecture

‘ only load and store instructions can access memory

GPR: Register-Memory Arch

e Register-memory architecture(any instruction can access memory)
e C=A+8B

o Load R1, A

o Add R3, R1, B

o Store R3, C

{c) Register-memory (c) Register-memory (c) Register-memory

— I R 3

— I R 3

af://n73
af://n100

GPR: Load-Store Architecture

e Load-Store Architecture(only load and store instructions can access memory)

e C=A+8B
o Load R1, A
o Load R2, B
o Add R3, R1, R2
o Store R3, C

(d) Register-register/load-store (d) Register-register/load-store (d) Register-register/load-store

af://n115

Practice

D=AxB—-(A+C x B)

Stack

Instruction set:
e add, sub, mul, div,

e push A, pop A

e Answer

. push A
. push B
mul

. push A
. push C
. push B
mul

add

O 00 9 060 o N NN

sub

=
o

. pop D

Accumulator

Instruction set:

e add A, sub A, mult A, div A,
e load A, store A

e Answer:

. add A

. store D

. mult B

1
2
3
4
5. load A
6
7. sub D
8

. store D

af://n132
af://n135
af://n167

Memory-Memory

Instruction set:
e 3 operands: add A, B, C; sub A, B, C; muL A, B, C
e 2 operands:add A, B; sub A, B; mul A, B; mov A, B

e Answer:

o 3 operands:

= mul D,

A
= mul E, C,
= add E, A

D

m m o

= sub D,
o 2 operands:

= mov
= mul

= mo

<

= mul

D,
D,
E,
E,
= add E,
D,

m > W O W >

= sub

Register-Memory

Instruction set:
e add R1, A; sub R1, A; mul R1, B
e load R1, A; store R1, A

e Answer:

o load R1, A
o mul R1, B

o load R2, C
o mul R2, B

o add R2, A

o store R2, D
o sub R1, D

o store R1, D

Load-Store

Instruction set:
e add R1, R2, R3; sub R1, R2, R3; mul R1, R2, R3
e load R1, &A; store R1, &A

af://n195
af://n233
af://n261

e Answer:

o load R1, &A

o load R2, &B

o load R3, &C

o mul R3, R3, R2 // R3
o add R3, R3, R1 // R3 = A+BxC
o mul R1, R1, R2 //R1 = A%B

o sub R1, R1, R3

o store R1, D

BxC

RISC-V ISA

Formats of Instruction

FEECERMPIINA, FECERBSSREMA, IBEHA

RISC-V Address Mode

PR St

1. 3BEN#EHE | Immediate addressing
2. S1FEESE | Register addressing
3. ESHt | Base addressing
4

. PC-relative addressing

Register Operands

1. Arithmetic instructions use register operands

2. RISC-V has a 32X32-bit register file

1. Use for frequently accessed data
2. Numbered 0 to 31
3. 32-bit data called a "word"

3. Assemble names

. x0: constant 0

. x1: link register
. X2: stack pointer
. x3: global pointer
. X4: thread pointer

. xb-x7, x28-x31: temporay

NN o0 o N NN

. X8-x9, x18-x27: save

af://n289
af://n290
af://n294
af://n305

8. x10-x17: parameter / result

Register | ABI Name | Description Saver
x0 Zero Hard-wired zero —

x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer —

x4 tp Thread pointer —

x5 t0 Temporary/alternate link register | Caller
x6-7 t1-2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10-11 | a0-1 Function arguments/return values | Caller
x12-17 | a2-7 Function arguments Caller
x18-27 | s2-11 Saved registers Callee
x28-31 | t3-6 Temporaries Caller

o CallerfBFIREINASIRTE, SWES (REFHE)
o CalleeTFANSREAZE, THREFE

Memory Operands

e Main memory used for composite data

o Arrays, structures, dynamic data

e To apply arithmetic operations

o Load values from memory into register

o Store result from register to memory

e Memory is byte addressed

o Each address identifies an 8-bit byte

e Words are aligned in memory

o Address must be a multiple of 4

e RISC-V is Little Endian

o Least-significant byte at least address

o c.f.Big Endian: most-significant byte at least adddress of a word

Example:

e C code:

o g =h + A[8];

e Compiled RISC-V code:

o g in x8, h in x9, base address of A in x18

o Index 8 requires offset of 32

af://n344

= 4 Dbytes per word

= w x5, 32(x18) #RIE32EEPA[8]12LAARHREIZ8*4=32
= add x8, x9, x5

Register vs. Memory

e Register are faster to access than memory
e Operating on memory data requires loads and stores
o More instructions to be executed
e Compiler must use registers for variables as much as possible

o Only spill to memory for less frequently used variables

o Register optimization is important

The Four ISA Design Principles

. Simplicity favors regularity | EEETHBEIF—0E
. Smaller is faster | #u\ikik

3. Make the common case fast | JREBEMEHRNEE

N -

BIENXOEFEH0, FoiEMES

4. Good design demands good compromises | FHUIRITEEFHIZ D

Pipelining

Different modes of execution

e Sequential execution
o Advantages: Simple control, saving equipment.

e Single/Twice overlapping execution

o Advantages: High-usage of functional unit, the utilization rate of functional

unit is improved obviously.
o Disadvantages:
= Much more hardware was needed.
= Single: the control process became complicated.

= Twice:

= Separate fetch, decode, and execution components are required.
= Conflict in access memory

= Instruction memory & data memory

af://n397
af://n413
af://n426
af://n427

= Instruction cache & data cache (same memory): Hardware structure

= Adding dinstruction buffer between memory and instruction decode
unit.

IRFFATFIE S I THERS A LROERFITE

What is pipelining?

* Pipelining: —#ISSHITIER DB (n>2) MEMERISFHE, BEnFAERESIHEER—IHEARNZE
BE,

o PipeliningaLAE{EESEHIT(overlapping execution)i9¥ E;
o TKGHHENFHIEREINEEAENMNER (stages or segments of the pipeling)
o MERAYZIENMIRKEANRE (depth)

Characteristics of pipelining

e The pipelining divides a process into several sub processes, each of which is

implemented by a special functional unit.

e The +time of each stage in the pipelining should be -equal as much as
possible,otherwise the pipelining will be blocked and cut off. A Tlongest stage
will become the bottleneck of the pipelining.

e Every functional part of the pipelining must have a buffer register (latch), which

is called pipelining_register.

o Function: transfer data between two adjacent stages to ensure the data to be
used later, and separate the processing work of each stage from each other.

e Pipelining technology is suitable for a 7large number of repetitive sequential
processes. 0Only when tasks are continuously provided at the input, te efficiency
of pipelining can be brought into full play.

e The pipelining needs the pass time and the empty time

o Pass time: the time for the first task from beginning(entering the pipelining)
to ending.

o Empty time: the time for the Tlast task entering the pipelining to have the
result.

Classes of pipelining

s FEHEH/I:

o Single function pipelining | BAINRE: only one fixed function pipelining.

o Multi function pipelining | £ IEE: each section of the pipelining can be

connected differently for several different functions.

af://n462
af://n472
af://n492

= Static pipelining: BSHEE—RIRIERA, REERE—THREEE (: BRELBINEMS, 7
HLUMERE)

= For static pipelining, only the input is a series of teh same operation
tasks, the efficiency of pipelining can be brought into full play.

» Dynamic pipelining: FER—RIERA, FEIDBETLAERE (U0: TEMILERIBHERTLATENSR
i%)

* Static pipelining: In the same time, each segment of the multi-
functional pipelining can only work according to the connection mode
of the same function.

* For static pipelining, only the input is a series of the same operation tasks, the
efficiency of pipelining can be brought into full play.

* Dynamic pipelining: In the same time, each segment of the multi-
functional pipelining can be connected in different ways and perform
multiple functions at the same time.

* It is flexible but with complex control.
* It can improve the availability of functional units.

o BHERHHEH/:
o Component level pipelining(in component-operation pipelining:
» RIEARRURE, INEFFEETLARRE, SLHoperationsfipipeline
o Processor level pipelining(inter component-instructino pipelining):
= HEHTARFHHAICPU
o Inter processor pipelining(inter processor-macro pipelining):
» BARRRESHITES, A M AEEZIE—MSENIIRE, RAZELH;pipeline
Component level pipelining (in component - operation pipelining) : The
arithmetic and logic operation components of the processor are

divided into segments, so that various types of operation can be
carried out by pipelining.

Processor level pipelining (inter component - instruction pipelining):
The interpretation and execution of instructions are implemented
through pipelining. The execution process of an instruction is divided
into several sub processes, each of which is executed in an
independent functional unit.

Inter processor pipelining (inter processor - macro pipelining): It is a
serial connection of two or more processors to process the same data
stream, and each processor completes a part of the whole task.

o B=ROEH/I: SMFAEEM

o Linear pipelining

o Nonlinear pipelining

» FEETROER, HE—EIRA EsLIREAINEE

R SR)RR

Nonlinear pipelining

rd J'“\._ N TN
A Ay M

Task: 251252253254 2522532542532

Linear pipelining: Each section of the pipelining is connected serially
without feedback loop. When data passes through each segment in
the pipelining, each segment can only flow once at most.

Nonlinear pipelining: In addition to the serial connection, there is also a
feedback loop in the pipelining.

S5cheduling problem of nonlinear pipelining.

Determine when to introduce a new task to the pipelining, so that the task
will not conflict with the task previously entering the pipelining.

B UESLES

o Ordered pipelining

o Disordered pipelining

DisorderedZSRKEFNIFLMERRES:, FOAERR

Ordered pipelining: In the pipelining, the outflow order Of Tasks 15
exactly the same as the inflow order. Each task flows by sequence in
each segment of the pipelining.

[

Disordered pipelining: In the pipelining, the outflow order of tasks is
not the same as the inflow order. The later tasks are allowed

completed first.

o BREHE

o Scalar processor

o Vector pipelining_processor

Scalar processor: The processor does not have vector data
representation and vector instructions, and only deal with scalar data
through pipelining.

Vector pipelining processor: The processor has vector data
representation and vector instructions. It is the combination of vector
data representation and pipelining technology.

Pipeline Performance

Throughput(TP) | HItE

. puEERR kRS RE-STP = 7, TP < TPy,

e.g.
SP!CE m=4 T:{m"‘n-‘l)xdta
1|2 4
12|34 | = -
e TP=n/(m+n-1) /t,
e Tme TP =1/t
T.=m. 0. [ﬂ'l].Jtn

o HehAtgApipelinelIHTFHEER, BIRTEIRKHERAORTIE;
o MARERE

o NAIESHRE

o LETEEEREAORTE, T ProrEic F RESTHEMmEN

o The actual throughput of the pipeline is less than the maximum throughput,
which is not only related to the time of each segment, but also related to m
and n.

o Ifn>m, TP =~TP,.
o TP under Pratical Case

o LRER TEMBRETHRIEARE, &IKAIMERIUMGRIPER (bottleneck segment)

af://n567
af://n568

Space

B E=piin .
1 2 -} n == —_—
. > 1 T . T
1 2 " |n Time
n 1
TP = 1"f?ﬂlﬂ25 =

m AL+ (n — 1)max(At, At,, .., At,)

n 4

T (m—1DAt+n max (4t At,, ..., At,) TP —
max 3AL

max(At, At,, ..., At,)

o fRiRbottlenecklys5i%:
= Subdivision:
o EHRIMNERA S S RT LUK SR ERI SR NN R
= Repetition:

» BEHUTARESHIMRENN R (BIRE RN, KHERHIT=1 8 M)

Speedup(Sp) | NMEEL

Execution timenon—pipelined
Ezxecution Timepipelined

. Ll TP B, iHEEEISp = (mifﬁfzto = ot

oSp:

o %N > mit, Sprm

Efficiency(7) | ¥=

o 1 = 2L (S R SR A (R 7 O AT
o Hn>meg, n=1

Example

af://n610
af://n618
af://n624

Pipeline Performance

* Vector A(al, a2,a3,a4)
* Vector B(b1,b2,b3,b4)
* Compute vector dot product (A-B) in the static dual-function pipelining.

= 1 Le- 2 3 5 —z

y—*

* 1>2->3->5 Addition pipelining

* 15455 Multiplication pipelining
* The time of each segment in the pipelining is At
Segments
Multiplication Addition Addition
s

Timfzﬂt

1 : |
(9 1011 12 13 14 15
mput | X 31 32 23 24 | | a1b1 a3b3 p1b1ta2b2
R A ot
Y B b2 bs ba | | 322 adbs pabaiadhe
Output aibl; a?l"bg; a1b1+a!b2: alb1+a2h2+a3b3+adhd
{z ; 5 :
a2h2 24bd a3b3+a4b4

Segments |

Multiplication Addition Addition

[| | | X Time/ 't

o 1 2 3 4 5 & 7 & 9 10 11 12 13 14 15

TP=7/(15./t)=0.47/ /'t
Sp=(4 X 3/t+3 X 4.t)/(15/t)=1.6
n=(3 X 4/t+4 X 3.4t)/(5 X 15./t)=32%

* Vector A(al, a2,a3,a4)
* Vector B(b1,b2,b3,b4)
* Compute vector dot product (A-B) in the dynamic dual-function pipeline-

ing

Addition
At At At
— —_—
1 2 3 5
— —
At VAN

Multiplication

1-3->4->5 Addition pipelining

15255 Multiplication pipelining
S— J:: ? c 13 A+B CILD A+B-:—C+D
5 :_E quL="""|:":BI
= F'-I'- = = --;:-. B.:'AIXBE
, i s i & : ; CoAsXB,
3 BEEREE B : } i | D=AXB,
2 : I
1 N : ; T i i '
01 2 3 4 56 7 8 9 1011121314 151617 18 g
Input A, Ay, A, A, A C A+B Time
B, B, B, BB D C+D
7 28A1 _ dx4+3x4
TP =— S ~1.56 E=—" 2031

18A7 T 18A7 5418

Ideal Performance for Pipelining

e If the stages are perfectly balanced, the time per instruction on the pipelined
Time per instruction on unpipelined machine
Number of pipelined stages

processor equal to:

e So ideal speedup equal to Number of pipeline stages

RISC-V Pipelining

e Five stages, one step per stage

1. IF: EUg, BUH I-Mem o PC iltRbHIIES

2. ID: 9, BIEOMBAEHIES, FElSFRE
3. EX: T, BT ALU #BME

4. MEM: ip7%, 518 D-Mem #HTENELSEEN

5. WB: B[E|, BERERIZFFE3G

Pipelining and ISA Design

e RISC-V ISA designed for pipelining
o IBSKEREEN 32 i, ZTHE—EHRHTEGEEFD
o 15O LEME, ZTFE—ITHRIFEE. EHEFS
o fFH load/store JHtLEM, —NEARRTEMENE, —NFHHEE
o FHRFERENTIHY, AILE—NEEIMEHT

An Implementation of Pipelining

o NIMERETFRS (pipeline register) EHFESBER: IF/ID. ID/EX. EX/MEM. MEM/WB
o IXIUNMNERETFFESHN PC BHiFss—RERKED AT ENED
o FALIEEREXANMTFBE, HEREHRERESIEE, ERRET
o ANEFSRAELTHRHTERN, MERSEEHITRE, CRUAAESEENER
o HEBIEPEHAEE
o MEM MEITESXER, M4 PC. AlaERs|EIEHIEKR
o WB MERSEIETFEE, a5 EsiEEl
o ID 1 WB MEREIRMERASESRANHE, BFE=4EEMER, EA ID MERFIZESEFES, WB MERRSEA
Bfres, HATHATRANERD

How Pipelining Improves Performance

e Decreasing the execution time of an individual instruction X

e Increasing instruction throughput v

af://n630
af://n636
af://n651
af://n664
af://n684

The Pipelined Version of the Datapath

| /1D |
o

[o/ex]

| EX/MEM

| mem/we |

THREDET, R ARERRE

e Multiple-Clock-Cycle Pipeline Diagram of five Instructions

Orgher
(in instructions)

id x10, 40(x1)

sub x11, x2, x3

add x12, x3, x4

Id =13, 48(x1)

add x14, x5, =6

Time (in clock cycles)

CC1 cc2

cCci

CCa

CCSs

CCé cC7

cCcsa

cCo

e Traditional Multiple-Clock-Cycle Pipeline Diagram

af://n690

Time (in clock cycles) ———————— pu——

cC1 cCc2 cC3a CC4 cCsS cce CC7 cCca cco

Program
exacution
order
(in instructions)

id x10, 40(x1) Instruction | Instruction | & son | 0% Rvvite-beckd

. fetch decode access
Instruction | Instruction Data
sub x11, 2, x3 feich Execution Write-back
Instruction | Instruction Data
add x12, x3, x4 feich " " Execution Wirite-back
id x13, 48(x1) h:::“"ﬂ*“f” Exscution | 2®* |\\rie-back
Instruction | Instruction Data
add x14, x5, x6 feich " Execution Wnte-back

Now draw the Single-clock-cycle pipeline diagram at CC5

| ~ add x14,x5,x6 Id x13,48(x1) | add x12,x3,x4 | subx11,x2,x3 Id x10,40(x1)
Instruction Fetch " Instruction Decode Execution Memory Write Back
E‘) EL.‘ F-\'ﬂu MIL&B

i — . f‘_\1 I.‘IA- '...:.—_—_-.
(e [|
y I -
- 1
- st e
el L

=

|

—lil-.-n-
i

]
[

|

r::)

Pipeline Hazards

Structural Hazard | Z&E5K

e A required resource is busy

e Solution:

1. Instructions take it in turns use resource, some instruction have to stall

2. Add more hardware to machine

Can always solve by adding more hardware

af://n706
af://n707

Data Hazards | ZiEEE

Data dependency between instructions

e Need to wait for previous instruction to complete its data read/write

Solution:

o Forwarding_ | Ei#: Adding extra hardware to retrieve the missing item early

from the internall resources

= Forwarding Conditions:

Mux Control Source
ForwardA = ID/EX

00

FA = 10 EX/MEM
FA = 01 MEM/WB
FB = 00 ID/EX

FB = 10 EX/MEM
FB = 01 MEM/WB

o Stall =:

= ¥fF Load-Use Data Hazard

Explanation

The first ALU operand comes from the register

~ comes from the prior ALU result

~ comes from data memory or an earlier ALU
result

The second ALU operand ~

~ o~

= £ ID PERFEEITIRN load-use B
= ID/EX.MemRead = 1 (ID/EX.MemWrite = 0)
= ID/EX.Rd = IF/ID.Rsl1 & IF/ID.Rs2

= &

KL

<o

= 3EF] ID/EX MiERESFERTRIEEISSEA 0 (BATEA—4 nop)
= fHIE PC FHF=8F0 IF/ID MERSFFeEEHT

» EEE—NEBHEMILUZER MEM hazard B{TRNBMRIR

o DataPath with Hazard Detection

af://n720

(" Hazard \ ID/EX.MemRead

ID/EX

IF/DWirite

™ X i
7\ e EX/MEM
[A\
;I nntrnll: M WB MEM/WB
\ 0 = L_.h wel

2
s /
z IF/ID N/
'
M
u
5 X
kil Registers N
= {Farwardal 1 il
. B ~ ALU =
Pc) Instruction = M
memory u Data
memol
X Ty
p—y
——
ForwardB
IF/ID.RegisterRs1 L]
|IF/|ID RegisterRs2
IF/ID.RegisterRd Rd
| | 4 |
Rs1 Forwarding J
L Rs2 | unit
h A

Control Hazards | {=HIGE

Flow of execution depends on previous instruction
Branch determines flow of control
o Fetching next instruction depends on branch outcome

o Pipelining can’t always fetch correct instruction
= Still working on ID stage of branch
In RISC-V pipelining

o Need to compare registers and compute target early in the pipelining

o Add hardware to do it in ID stage

How to Reduce Branch Delay

o Key processes in branch instructions

= Compute the branch target address

= Judge if the branch success

o Move hardware to determine outcome to ID stage

= Target adddress adder

= Register comparator

af://n788

Code Scheduling

DIGERIE, Sl —LmsR (MIPsHEER)

ADD x1.x2.x3 SUB x4.,x5.x6 ADD x1,x2.x3
ifx1=0 then —
if x2=0 then —
H R e ADD x1 X2.X3
delay slot
delay slot if x1=0 then
SUB x4.x5.x6
Pra—

l l l

SUB x4.x5.x6 ADD x1.x2.X3
it x2=0then — _
ADD x1 5.3 ifx1=0then —
ADD x1 x2.X3 HLALES
if x1=0 then SUB x4.x5.x6
SUB x4.x5.x6
Y f—
Scheduling from former Scheduling from object Scheduling from failure

Data Hazards for Branches

o If a comparsion register is destination of 2"% or 3"¢ preceding ALU instruction

add x1, x2, x3 IF I D I EX IIMEM W8
add x4, x5, x6 IF I ID I EX I WE
IF I D I% IMEM]I WEB
\
beq x1, x4, disp IF I it I EX I MEM I WB

o Can resolve using forwarding

e If a comparsion register is a destination of preceding ALU instruction or ond

preceding load instruction

af://n828
af://n833

lw x1, addr IF I ID I EX IIMEMlll\NB

add x4, x5, x6 IF I ID I EX I w8

beq stalled IF I D I IO IO

beq x1, x4, disp I ID I EX IlMEMI wB

o Need 1 stall cycle

e If a comparsion register is a destination of immediately preceding 7load

instruction

lw x1, addr IF I D I EX IIMEMlIlwn

beq stalled IF I ID IOI IO
beq stalled I D I IO IO

beq x1, x0, disp I mll EX IlMEMI WB

o Need 2 stall cycles

Dynamic Branch Prediction

e In deeper and superscalar pipelines, branch penalty is more significant
e Use dynamic prediction

o Branch prediction buffer (aka branch history table | 9%HE$RXR)

[}

Indexed by recent branch instruction addresses | FTLEFEIFAIDZIESHIHbIE

o

Stores outcome (taken/not taken) | EHWHNBEEHBDIEE

o To execute a branch

= Check table, expect the same outcome
= Start fetching from fall-through or target

= If wrong, flush pipeline and flip prediction

Failure)
Success Failure
Success

af://n853

1-Bit Predictor: Shortcoming

e Inner loop branches mispredicted twice! | R{ERGSHERFIERIFNNIHES IR

outer: .. *

inner: .. —

beq .., .., outer

o Mispredict as taken on last iteration of inner loop

o Then mispredict as not taken on first iteration of inner loop next time around

‘ FIRERIXANEIRR, 5INFRATTRNRS

2-Bit Predictor

e 0Only change prediction on two successive mispredictions

‘ BIRAEN

Success :
Failure
Branch prediction: 11 1
Success Success
Success Failure

Branch prediction: Fallure_

Failure

(Failure

Success

Instruction-Level Parallelism(ILP)

ZRE, T EHERASSRES, BEHT

e Pipelining: executing multiple instructions in parallel
e To increase ILP

o Deeper pipeline
= |Less work per stage — shorter clock cycle

o Multiple issue

= Replicate pipeline stages — multiple pipelines

af://n876
af://n888
af://n896

= Start multiple instructions per clock cycle
= CPI < 1, so use Instructions Per Cycle(IPC)

= E.g., 4GHz 4-way multiple-issue
= 16 BIPS, peak CPI = 0.25, peak IPC = 4

= But dependencies reduce this in pratice

Multiple Issus

e Static multiple issue | E&5ZAEY

B (mi¥es) REWBLESRGHE

o Compiler groups instructions to be issued together
o Packages them into “issue slots (&&E) ”

o Compiler detects and avoids hazards
e Dynamic multiple issue

o CPU examines instruction stream and chooses instructions to issue each cycle
o Compiler can help by recordering instructions

o CPU resolves hazards suing advanced techniques at run time

Two types of multiple-issue processor
o MZKRSEAER, E&RAFNHIFEETEEN
Superscalar

* The number of instructions which are issued in each clock cycle is
not fixed. It depends on the specific circumstances of the code. (1-
8, with upper limit)

* Suppose this upper limit is n, then the processor is called n-issue.

* It can be statically scheduled through the compiler, or dynamically
scheduled based on Tomasulo algorithm.

* This method is the most successful method for general computing
at present.

s BRIESTF | #ESRIT—ERFIRY, BERFEREE

af://n926
af://n948

VLIW (Very Long Instruction Word)

* The number of instructions which are issued in each clock cycle is
fixed (4-16), and these instructions constitute a long instruction or

an instruction packet.

* In the instruction packet, the parallelism between instructions is
explicitly expressed through instructions.

* Instruction scheduling is done statically by the compiler.
* It has been successfully applied to digital signal processing and

multimedia applications.

Comparison

Ba==——1

;

1] 1 i 3 ; ; [
Normal Pipeline

9 To

I 2 3 4 5 61
Superscalar

F—

IEA

o1 2 3 4 5 6 0

Super pipcli_ne

Scheduling

Static Multiple Issue

e Compiler must remove some/all hazards

o Recorder instructions inti issue packeys

o No dependencies with a packet

o Possibly some dependecies between packets

= Varies between ISAs; compiler must konw!

af://n957
af://n959
af://n960

o Pad with nop if necessary

Dynamic Multiple Issue

* “Superscalar” processors

* CPU decides whether to issue 0, 1, 2, ... each cycle
* Avoiding structural and data hazards

* Avoids the need for compiler scheduling
* Though it may still help
* Code semantics ensured by the CPU

* Allow CPU to execute instructions out of order to avoid stalls
* But commit result to registers in order

LR
Why Do Dynamic Scheduling?

* Why not just let the compiler schedule code?

* Not all stalls are predicable
* e.g., cache misses

* Can’t always schedule around branches
* Branch outcome is dynamically determined
* Different implementations of an ISA have different latencies and
hazards

Does Multiple Issue Work?

* Yes, but not as much as we’d like
* Programs have real dependencies that limit ILP
* Some dependencies are hard to eliminate
* e.g., pointer aliasing
* Some parallelism is hard to expose
* Limited window size during instruction issue
* Memory delays and limited bandwidth
* Hard to keep pipelines full
* Speculation can help if done well

af://n976

	ISA
	How to Improve the CPU
	ISA Classification Basis
	ISA Classes
	Stack Architecture
	Accumulator Architecture
	GPR Arthitecture
	GPR: Register-Memory Arch
	GPR: Load-Store Architecture
	Practice
	Stack
	Accumulator
	Memory-Memory
	Register-Memory
	Load-Store

	RISC-V ISA
	Formats of Instruction
	RISC-V Address Mode
	Register Operands
	Memory Operands
	Register vs. Memory

	The Four ISA Design Principles

	Pipelining
	Different modes of execution
	What is pipelining?
	Characteristics of pipelining
	Classes of pipelining
	Pipeline Performance
	Throughput(TP) | 吞吐量
	Speedup(Sp) | 加速比
	Efficiency(\eta) | 效率
	Example
	Ideal Performance for Pipelining

	RISC-V Pipelining
	Pipelining and ISA Design
	An Implementation of Pipelining

	How Pipelining Improves Performance
	The Pipelined Version of the Datapath

	Pipeline Hazards
	Structural Hazard | 结构冒险
	Data Hazards | 数据冒险
	Control Hazards | 控制冒险
	Code Scheduling
	Data Hazards for Branches
	Dynamic Branch Prediction
	1-Bit Predictor: Shortcoming
	2-Bit Predictor

	Instruction-Level Parallelism(ILP)
	Multiple Issus
	Two types of multiple-issue processor

	Comparison
	Scheduling
	Static Multiple Issue
	Dynamic Multiple Issue

